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Abstract

Mantle flow models based on seismic tomographic images of 3-D mantle struc-
ture may be used to successfully explain a wide range of global surface data related
to mantle convection. These tomography-based convection models place strong con-
straints on viscosity and lateral density variations in Earth’s mantle. The convection-
related observables which can be modelled include the global free-air gravity anoma-
lies, the dynamic surface and CMB topography, and the present-day tectonic plate
motions. The fundamental mantle flow theory needed to interpret these geodynamic
observables is reviewed for the case of a self-gravitating, compressible mantle with
coupled surface plates. The most important input to the flow models, namely the
effective viscosity of the mantle, may be inferred from simultaneous inversions of
glacial-isostatic adjustment and mantle convection data. These viscosity inferences
are used in numerical calculations of the geodynamic response or kernel functions
which provide the theoretical relationship between the surface observables and the
mantle density anomalies. Understanding the present-day dynamics of the mantle is
critically dependent on knowledge of these internal density perturbations and they
are derived here on the basis of a wide selection of recent global tomography models
derived from seismic shear velocity (VS) data. A detailed review of the geodynamic
observables predicted on the basis of these VS tomographymodels is presented and it
is found that all 3-D models derived solely from seismic data provide very similar fits
to the convection data. Although the geodynamic fits obtained using the published,
purely seismic 3-D mantle models is reasonably good, there remains much room for
improvement. The residual misfit, of the order of 50% of the signal in the geodynamic
data, raises fundamental questions about the degree to which mantle heterogeneity is
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resolved by the seismic tomography models or whether the classical fluid mechanical
theory employed to model flow in the mantle is adequate. Another outstanding is-
sue in current efforts to understand mantle flow dynamics is the relative importance
of the thermal and compositional contributions to mantle heterogeneity. To address
these major questions a discussion is presented of recent efforts to successfully recon-
cile the independent constraints on 3-D mantle structure and flow provided by global
seismic and convection-related data sets. The tomographic procedure for jointly in-
verting these seismic and geodynamic data, including additional constraints from
mineral physics data, is found to greatly improve the fits to the convection-related
data and this is accomplished in the context of a dominantly thermal origin for the
mantle heterogeneity.

1 Introduction

The earliest tomography models (e.g. Dziewonski et al. 1977; Dziewonski 1984; Clay-
ton & Comer 1983 – reported in Hager & Clayton 1989; Woodhouse & Dziewonski 1984)
exhibited a large-scale three-dimensional (3-D) structure in Earth’s mantle which was rea-
sonably well correlated to the major surface manifestations of mantle convection, namely
the large-scale nonhydrostatic geoid (Hager et al. 1985) and the large-scale tectonic plate
motions (Forte & Peltier, 1987). These early models of mantle heterogeneity thus helped
to show that seismic tomography can indeed resolve the lateral variations inmantle struc-
ture which drive the convective flow responsible for the ’drift’ of the continents and the
large-scale perturbations in Earth’s gravitational field.

Steady progress in global seismic tomographic imaging over the past 15 years has
yielded models of 3-D mantle structure which posses significantly improved resolution
and reliability (e.g., Ekström & Dziewonski 1998; Ritsema et al. 1999; Mégnin & Ro-
manowicz 2000; Masters et al. 2000; Boschi & Dziewonski 2000; Grand 2002; Antolik
et al. 2003; Li et al. 2008; Kustowski et al. 2008; Simmons et al. 2010; Ritsema et al.
2011). These improvements are evident in the remarkable accord amongst the images of
large-scale mantle structure provided by these different models. Such agreement is en-
couraging, especially when we consider that these models are obtained on the basis of
different data sets, different theoretical treatments of seismic wave propagation and dif-
ferent algorithms for inverting the global seismic data. Helpful reviews of the methods,
data sets and current challenges in global seismic imaging may be found in Dziewonski
& Romanowicz (2007) and Thurber & Ritsema (2007).

While the analyses and discussion presented below will focus on how seismically in-
ferred 3-Dmantle structure may be used to explain geodynamic data and tomodel mantle
flow dynamics, it is important to note that much effort has also been dedicated to the con-
verse approach, namely to infer 3-Dmantle structure from geodynamic data. This inverse
approach based on geodynamic constraints began at almost the same time as the earliest
global tomography inversions. Hager (1984) proposed amantle flowmodel based on esti-
mated density anomalies associated with seismically active subducted slabs and used this
model to obtain a good match to very long wavelength geoid anomalies. Although subse-
quent studies, for example by Ricard et al. (1989), attempted a more general inference of
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mantle heterogeneity using different geodynamic data, the subducted-slab geodynamic
models developed byHager (1984) became prevalent. This led, for example, to a study by
Forte & Peltier (1989) which constrained the distribution of subducted slab heterogene-
ity using other geodynamic observables such as tectonic plate motions and core-mantle
boundary topography. The latter study also attempted to use the geodynamic observables
to infer the buoyancy forces associated with mantle plumes under mid-ocean ridges.

Tectonic plate motions and long wavelength geoid anomalies have proved to be the
most important constraints in developing geodynamic models of 3-D mantle heterogene-
ity in terms of subducted slabs. The geological history of tectonic plate motions as de-
rived from paleomagnetic data (e.g., Gordon & Jurdy 1986) have been an especially im-
portant ingredient in developing models of both past and present-day subducted slab
heterogeneity (e.g., Richards & Engebretson 1992; Ricard et al. 1993). These models have
been very useful for exploring time-dependent dynamics of the mantle (e.g., Lithgow-
Bertelloni & Gurnis 1997; Lithgow-Bertelloni & Richards 1998). Direct comparisons be-
tween the long wavelength pattern of subducted slab heterogeneity and the correspond-
ing pattern of heterogeneity derived from seismic tomography have shown good correla-
tions at the longest wavelengths (Richards & Engebretson 1992). When all wavelengths
are considered, however, the global correlations between the slab heterogeneity and dif-
ferent tomography models are relatively poor, with correlation coefficients less than 0.3
throughout the mantle (Fig.7 in Lithgow-Bertelloni & Richards 1998).

There are various factors which might explain the less than satisfactory agreement
between seismic models of 3-D mantle structure and the reconstructions of mantle het-
erogeneity in terms of subducted slabs. Firstly, from a purely technical perspective, the
evolution of the slab trajectories were not determined in a fluid mechanically consistent
manner by numerically solving the advection-diffusion equations. Progress in this direc-
tion has been made by Bunge et al. (1998), McNamara & Zhong (2005) and Quéré & Forte
(2006) by solving the full set of thermal convection equations with moving tectonic plates
as a surface boundary condition. Secondly, the slab models assume that thermally gen-
erated heterogeneity dominates in the mantle and this may not be applicable in regions
of the mantle with significant compositional heterogeneity (e.g., Forte & Mitrovica 2001;
McNamara & Zhong 2005). Perhaps the most important deficiency in these efforts to ex-
plain mantle heterogeneity in terms of slab subduction alone is that they do not account
for the presence and evolution of hot thermal plumes in the mantle which have been con-
sistently imaged in the global tomography models (e.g., Montelli et al. 2004; Nolet et al.
2006). A recent appraisal of the origin and importance of mantle plumes in convection
models that incorporate 3-D mantle structure derived from seismic tomography may be
found in Glisovic et al. (2012).

Seismic tomography continues to be the single most important technique for directly
inferring the 3-D heterogeneity in the mantle which is associated with the process of ther-
mal convection. The significant advances in global seismic imaging over the past few
years provides the underlying motivation for the detailed discussion of the geodynamic
implications which will be presented below. A recent detailed review by Becker & Boschi
(2002) of the currently available tomography models focussed on a quantitative analy-
sis of similarities and differences between these models. The work presented below will
further extend this previous analysis by carrying out calculations of the mantle flow pre-
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dicted on the basis of these tomography models and examining in detail the extent to
which the tomography-based flowmodels provide a satisfactory explanation for themain
convection-related surface observables.

2 Geodynamic Observables and Mantle Flow Theory

In the following, the main global geophysical constraints on mantle structure will be pre-
sented. These constraints include the free-air gravity anomalies, the dynamic surface and
CMB topography and the tectonic plate motions. The theoretical relationship between
these convection-related observables and the internal 3-D structure will be developed in
terms of a fluid mechanical model of mantle dynamics.

2.1 Convection-related surface observations

An understanding of thermal convection in the mantle is necessary for explaining a mul-
titude of geophysical and geological processes which we can observe and measure at the
surface of the Earth, such as continental drift, earthquakes, mountain building, volcan-
ism, perturbations in Earth’s gravitational field, variations in oceanic bathymetry and
continental elevation, and long-term changes in global sea-level variations. The principal
surface manifestations of mantle convection which have been employed to study the large
scale structure and dynamics of the solid Earth are illustrated schematically in figure 1.

The observational constraints on 3-D mantle structure and dynamics which will be
considered below are the global free-air gravity anomalies, the dynamic surface and CMB
topography and the horizontal divergence of the tectonic plate motions. The Earth’s
gravitational potential perturbations are usually represented in terms of geoid anoma-
lies however, as pointed out in Forte et al. (1994), a more detailed and evenly balanced
representation (especially at long wavelengths) of the spectral content is provided by the
free-air gravity anomalies shown in figure 2a.

We will employ the term ‘dynamic topography’ to mean all contributions to Earth’s
surface topography which arise from density anomalies in the convecting mantle – in-
cluding the lithosphere. Observational constraints on dynamic topography therefore re-
quire an accurate model of crustal heterogeneity in order to remove all isostatic crustal
contributions to Earth’s measured surface topography. The topographic crustal correc-
tion, here based on model CRUST2.0 (Bassin et al. 2000), is described in detail by Perry et
al. (2003) and the resulting dynamic topography is shown in figure 2b.

The tectonic plate velocity field v may be conveniently summarised in terms of two
complimentary scalar fields: the horizontal divergence ∇H · v and the radial vorticity
r̂ ·∇×v (Forte & Peltier 1987). The constraint of plate rigidity imposes a linear depen-
dence between these two scalar fields (Forte & Peltier 1991) and hence it suffices that we
consider only the plate divergence, shown in figure 2c. (Amore detailed discussion of the
implications of plate rigidity, in terms of allowed plate motions, is also presented below
in section 2.3.7.)

The most robust global constraint on deep mantle density heterogeneity and dynam-
ics (Forte et al. 1995) is currently provided by the dynamical ellipticity of the CMB shown
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Figure 1: Convection-related surface observations. The most direct manifestations of thermal
convection in the mantle (represented schematically by the upwelling plume coloured in red) are
the surface motions of tectonic plates – which may be summarised by their horizontal divergence
field – and the flow induced topography of the solid surface and the core-mantle boundary (CMB).
The boundary undulations and the density anomalies in the mantle (due, for example, to the hot
upwelling plume) give rise to surface gravitational potential perturbations which may be mea-
sured in terms of geoid or gravity anomalies

in figure 2d. The discrepancy between theoretical predictions of the Free Core Nutation
(FCN) period (Wahr, 1981) and the value determined from Very Long Baseline Interfer-
ometry (Herring et al., 1986), led Gwinn et al. (1986) to conclude that the CMB ellipticity
is larger than that implied by theoretical calculations which assumed a rotating Earth in
hydrostatic equilibrium. This inference of an ‘excess’ ellipticity, in which the nonhydro-
static radius of the CMB at the poles is 400 metres less than at the equator, is supported
by recent analyses of the FCN period (Mathews et al. 2002).

The most appropriate mathematical basis functions for describing any bounded and
continuous function on a spherical surface are the spherical harmonics Y m

ℓ (θ, ϕ), where
position on the spherical surface is defined by colatitude θ and co-longitude ϕ. We may
therefore expand the geodynamic observables in figure 2 in terms of spherical harmonics
as follows:

f(θ, ϕ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

fm
ℓ Y m

ℓ (θ, ϕ) (1)
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Where the function f(θ, ϕ) represents any of the observables (gravity, topography or plate
divergence) and the indices ℓ, m which characterise each spherical harmonic are called
the harmonic degree and azimuthal order, respectively. (A useful introduction to spherical
harmonic functions may be found in Jackson, 1975.)

The spatial variation of the spherical harmonics is oscillatory in character it may be
characterised in terms of an equivalent horizontal wavelength. On a spherical surface of
radius r, a spherical harmonic Y m

ℓ (θ, ϕ) has a characteristic wavelength λℓ given by the
following expression:

λℓ =
2πr

√

ℓ(ℓ + 1)
≈ 2πr

ℓ + 1
2

, valid for ℓ≫ 1 (2)

In practise the infinite sum over degree ℓ in (1) is truncated at some finite value ℓmax

and for the fields in figure 2 it is ℓmax = 32. At the Earth’s surface (r=6368 km) this is
equivalent to a minimum horizontal length scale (or half wavelength) of about 600 km.

Spherical harmonic representations of surface fields can be used to quantify their spec-
tral content in terms of an amplitude spectrum. The amplitude spectrum measures the
mean (globally averaged) amplitude of a field at a particular wavelength λℓ (2) and it is
defined in terms of a ’degree variance’ σℓ as follows:

σℓ =

√

√

√

√

+ℓ
∑

m=−ℓ

fm
ℓ

∗fm
ℓ (3)

in which fm
ℓ are the spherical harmonic coefficients of the surface field (see expression 1)

and ∗ denotes complex conjugation.
A spectral description of the spatial correlation between two fields, as a function of

harmonic degree or wavelength, is quantified in terms of ’degree correlation’ rℓ, defined
as follows:

rℓ =

∑+ℓ
m=−ℓ f1

m
ℓ

∗f2
m
ℓ

√

∑+ℓ
m=−ℓ f1

m
ℓ

∗f1
m
ℓ

√

∑+ℓ
m=−ℓ f2

m
ℓ
∗f2

m
ℓ

(4)

in which f1
m
ℓ and f2

m
ℓ are the spherical harmonic coefficients of the two fields.

Degree variances and correlations are very useful spectral characterisations of the am-
plitude and spatial variation of globally defined surface fields (e.g., O’Connell 1971) and
they will be used frequently in the discussions presented below.
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Figure 2: Geodynamic observables. (a) The free-air gravity anomalies derived from the joint
geopotential model EGM96 (Lemoine et al. 1998). (b) The dynamic surface topography obtained
by removing the topography due to isostatically compensated crustal heterogeneity from Earth’s
observed topography. The CRUST2.0 (Bassin et al. 2000) crustal heterogeneity model is employed
here. (c) The horizontal divergence of the tectonic plate velocities given by the NUVEL-1 model
(DeMets et al. 1990). (d) The excess or dynamic CMB ellipticity inferred from core nutation data
(Mathews et al. 2002). All fields, with the exception of (d), have been expanded in spherical
harmonics up to degree and order 32 (see equation 1).
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2.2 Evidence for mantle flow in correlations between internal structure

and surface gravity anomalies

The need for a dynamical interpretation of the surface observables (Fig. 2) in terms of
very deep-seated convective flow in the mantle is illustrated in Fig. 3 in which long
wavelength gravity anomalies are directly compared to seismically inferred lateral het-
erogeneity in the lower mantle. The large-scale pattern of faster than average shear ve-
locities which lie below the periphery of the Pacific ocean (blue coloured regions in Fig.
3b) has long been interpreted in terms of accumulating lithospheric slabs which have sub-
ducted below the margins of the Pacific Ocean since Mesozoic times (Chase 1979; Chase &
Sprowl 1983; Richards & Engebretson 1992). These seismic anomalies, which presumably
represent positive density anomalies (i.e. cold subducted slabs), are closely correlated
with a broad ring-like pattern of negative gravity anomalies around the periphery of the
Pacific Ocean (red coloured regions in Fig. 3a).

The correlation between long-wavelength seismic heterogeneity in the lower mantle
and surface gravity anomalies was first identified by Dziewonski et al. (1977) and they
postulated that a dynamical interpretation in terms of mantle flow could explain the neg-
ative sign of the correlation. In a rigid or elastic mantle in which flow is absent, a positive
correlation between internal density and surface gravity is expected. However, in a con-
vecting mantle the gravitational signal of internal density anomalies is opposed by the
effect of flow-induced topography at the surface and at the CMB and this dynamical bal-
ance can lead to the observed negative correlation (e.g. Pekeris 1935; Parsons & Daly
1983; Richards & Hager 1984).

It is instructive to consider a more detailed spectral analysis of the correlation be-
tween surface gravity anomalies and seismically inferred lateral heterogeneity at different
depths in themantle. The degree correlations shown in Fig. 4 indicate which depth ranges
in the mantle may be important contributors to the different wavelengths of the surface
gravity field. The strongest positive correlations appear in the transition-zone region of
the mantle (from ∼400 to ∼800 km depth) and at the longest wavelength (degree 2) they
extend down to about 1400 km depth. The positive sign of these correlations indicates
that long-wavelength gravity highs overlie similarly large-scale seismically fast regions
located at the base of the upper mantle. Negative degree correlations between long wave-
length seismic and gravity anomalies are found in the near-surface region, down to about
400 km depth, and in lower mantle below 1400 km depth (as in Fig.3) where the strongest
negative correlations are found. These depth-dependent degree correlations, obtained
on the basis of long-wavelength tomography models derived more than a decade ago,
are robust observations which have been verified using the latest seismic tomographic
inferences of 3-D mantle structure (Ricard et al. 2006).

The correlation between mantle heterogeneity and surface gravity anomalies in a con-
vecting mantle has been shown to be a strong function of the depth dependence of the
rheological properties of the mantle (e.g. Hager 1984; Ricard et al. 1984; Hager et al. 1985;
Forte & Peltier 1987). In particular, as will be discussed further below, the change from
positive correlations at the top of the lower mantle to negative correlations at the bottom
of lower mantle (Fig. 4) can be interpreted in terms of a significant increase in mean vis-
cosity across the mantle. Other surface observables, such as the tectonic plate motions,
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also provide important constraints on the depth dependence of mantle rheology (e.g. Ri-
card & Vigny 1989; Forte et al. 1991). The geodynamic surface observables also provide
direct constraints on the 3-D distribution of density anomalies in the mantle and hence
these observables provide a fundamentally important and independent means of eval-
uating the extent to which seismic tomography models successfully resolve the lateral
heterogeneity in the mantle which is associated with mantle convection.

In the next section the dynamical link between lateral heterogeneity in the mantle and
convection-related surface observables will be developed in the theoretical framework of
a fluid mechanical model of viscous flow in the mantle. The reader wishing to skip over
this detailed mathematical treatment of the mantle flow theory is encouraged to jump
directly to sections 2.4 and 2.5, where the viscous response of the mantle and current
mantle viscosity inferences, respectively, are summarised.
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Figure 3: Surface gravity anomalies and deep-mantle heterogeneity. (a) Long wavelength free-
air gravity anomalies derived from the joint geopotential model EGM96 (Lemoine et al. 1998).
(b) Long wavelength seismic shear velocity anomalies at a depth of 2100 km derived from the
tomography model of Grand (2002). Both the gravity and seismic anomaly fields are synthesized
from spherical harmonics in the degree range ℓ = 1− 8.
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Figure 4: Depth-dependent correlations between 3-D mantle structure and gravity anomalies.
Each frame shows the degree-correlations between surface gravity anomalies and lateral varia-
tions in seismic shear velocity at a particular depth in the mantle. The seismic anomalies are de-
rived from an earlier long-wavelength tomography model SH8/U4L8 (Forte et al. 1993a). Figure
is adapted from Forte et al. (1993a).
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2.3 Fluid mechanical modelling of viscous mantle flow

2.3.1 Governing equations

Laboratory and geological evidence of the ability of mantle rocks to creep indefinitely
over geological time scales is understood in terms of the existence of atomic-scale defects
in the lattice of crystal grains (e.g. Nicolas & Poirier 1976). If the ambient mantle tem-
perature is sufficiently high, the imposition of nonhydrostatic stresses causes the lattice
defects to propagate and thus allows the mantle rocks to creep or ‘flow’ slowly. This pro-
cess may be characterised in terms of a single parameter, namely an effective viscosity
(e.g. Weertman & Weertman 1975; Weertman 1978).

The characterisation of the long-term creep properties of the mantle in terms of an
effective viscosity allows us to model the slow flow of the mantle with the conventional
hydrodynamic field equations. The hydrodynamic field equations (Landau & Lifshitz
1959) which express the principles of conservation of mass and momentum are

∂ρ

∂t
+ ∇ · (ρu) = 0 (5)

ρ
du

dt
= ∇ · σ + ρg (6)

in which u is the velocity field, d/dt = ∂/∂t+u·∇ is the total (Lagrangian) time derivative,
σ is the stress tensor, g is the gravitational acceleration and ρ is the density.

We may represent the gravity field g in terms of a gravitational potential:

g = ∇φ (7)

Notice that the sign convention adopted here is opposite to that generally adopted in clas-
sical physics, where a negative gradient of the potential is used. With this sign convention,
Poisson’s equation for the relationship between the gravity potential and density is:

∆φ = −4πGρ (∆ ≡∇ ·∇) (8)

An explicit expression for the stress tensor is given by

σij = −Pδij + τij (9)

with τij = η

(

ui,j + uj,i −
2

3
δijuk,k

)

+ λδijuk,k (10)

where τij is the viscous stress tensor, δij is the identity tensor, P is the total pressure, η and
λ are the isotropic viscosity coefficients, and ui,j = ∂ui/∂xj represents the derivative of the
velocity components i with respect to the coordinate direction j.

A number of simplifications are possible when applying the above field equations to
the problem of flow in the mantle:

• Since mantle rocks creep much slower than the acoustic velocity in the mantle, we
can safely ignore the term ∂ρ/∂t in the conservation of mass equation (5) and we
thus have the following anelastic-liquid approximation:

∇ · (ρu) = 0 (11)
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This simplification will explicitly rule out acoustic waves as solutions of the flow
equations.

• The second viscosity coefficient λ in the viscous stress tensor τij describes the dis-
sipation associated with change in fluid volume (density). This volume dissipation
may be neglected if the changes in fluid volume occur on time scales which are
much longer than for molecular relaxation processes (Landau & Lifshitz 1959), and
this is certainly true for mantle flow. Therefore, the viscous stress tensor τij will be
purely deviatoric:

τij = η

(

ui,j + uj,i −
2

3
δijuk,k

)

(12)

• We will further assume a Newtonian (i.e. linear) rheology, in which the mantle vis-
cosity η is not a function of stress or strain-rate. This assumption is not necessarily
appropriate for the mantle (particularly in high stress regions, such as subduction
zones) but it will greatly simplify the mathematical resolution of the flow equations
which is presented below.

• A major simplification, from a purely mathematical standpoint, derives from the
assumption that mantle viscosity varies only with radius. Although this assump-
tion will significantly simplify the mathematical treatment of the flow theory it may
have important physical implications for the dynamics of buoyancy induced flow
in the mantle (e.g., Richards &Hager 1989). These implications have been examined
previously in the context of global-scale flow in 3-D spherical geometry (e.g., Ricard
et al. 1988; Martinec et al. 1993; Zhang & Christensen 1993; Forte & Peltier 1994;
Čadek & Fleitout 2003; Moucha et al. 2007) and they will be discussed below.

• A fundamental physical simplification arises from the very large value of the ef-
fective viscosity in the mantle. We may non-dimensionalise the conservation of
momentum equation with the following variable transformations:

(x, y, z) = (d x, d y, d z)

t = (d2/κo) t

ρ = ρo ρ ; g = go g ; η = ηo η























(13)

where the original variables are on the left and the non-dimensional ones are on the
right. Quantities d, κo, ρo, ηo, go are characteristic scales for length, thermal diffusiv-
ity, density, viscosity, and gravitational acceleration, respectively, in the mantle. The
use, in (13), of a thermal diffusion time scale

tκ = d2/κo (14)

is appropriate since we are dealing with mantle flow arising from thermal convec-
tion. The stress tensor and pressure have the same physical units (see expression 9),
and hence their non-dimensional transformation is:

P = (ρogod) P and τ = (ρogod) τ (15)
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where, again, the original quantities are on the left and the non-dimensional ones on
the right. By virtue of the constitutive relation (12), and expression (15), we obtain
the following non-dimensional transformation for the flow variable:

u =
ρogod

2

ηo
u (16)

or equivalently,

u =go tν u (17)

where tν = d2/νo is the time scale for viscous diffusion of momentum and νo =
ηo/ρo is the kinematic viscosity. Finally, substitution of expressions (9, 13-17) into (6)
yields the following non-dimensional momentum conservation equation:

ρ

[

1

Pr

∂u

∂t
+
(go

d

)

t2ν u ·∇u

]

= ∇ · τ −∇P + ρg (18)

in which Pr = tκ/tν is the Prandtl number, which characterises the ratio of temper-
ature and momentum diffusion time scales.

To assess the importance of the terms on the left hand side of equation (18), we
assume the following values for the scaling variables: d = 3 × 106 m (for whole-
mantle flow), ρo = 3.3 × 103 kg/m3, go = 10 m/s2, κo = 1.5 × 10−6 m2/s, ηo = 1021

Pa s, and we thus obtain:

tν = 3× 10−5 s; tκ = 6× 1018 s;
go

d
= 3.3× 10−6 s−2; Pr = 2× 1023 (19)

The key quantity here is the characteristic time for momentum diffusion tν which
is very small (i.e. mantle flow will come to a complete halt in much less than a
millisecond if all buoyancy forces are suddenly removed).

The vanishingly small momentum diffusion time, and hence the very large Prandtl
number, implies that the inertial forces (ρdu/dt) in the momentum conservation
equation are completely negligible. Therefore, using expression (7), the momentum
conservation equation (6) simplifies to:

∇ · τ −∇P + ρ∇φ = 0 (20)

Equation (20) shows that in the absence of inertia, there must at all times be a balance
between the buoyancy forces ρg and the forces of viscous disspation described by
∇·τ . In other words, any changes in internal buoyancy forces will instantly produce
changes in fluid flow: this is a consequence of the essentially instantaneous diffusion
of momentum in the mantle.

We may define an idealised hydrostatic reference state for the mantle, which corre-
sponds to the absence of any internal flow or deformation (i.e. u = 0). In this situation the
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deviatoric stress field τ vanishes and the momentum conservation equation (6) reduces
to:

−∇Po + ρo∇φo = 0 (21)

in which Po, ρo, and φo are the pressure, density and gravity potentials in the hydrostatic
state. Poisson’s equation (8) for a hydrostatic planet is:

∆φo = −4πGρo (22)

We assume that in a dynamic mantle, with a non-vanishing mantle flow u, the pres-
sure, density and gravity potentials will be perturbed as follows:

P = Po + P1 ρ = ρo + ρ1 φ = φo + φ1 (23)

in which all perturbations are assumed to be small, that is:

∣

∣

∣

P1

Po

∣

∣

∣
≪ 1

∣

∣

∣

ρ1

ρo

∣

∣

∣
≪ 1

∣

∣

∣

φ1

φo

∣

∣

∣
≪ 1

If we now substitute the perturbed variables (23) into the equations of mass and mo-
mentum conservation (11–20) and Poisson’s equation (8), and then substract out the hy-
drostatic reference equations (21–22), we finally obtain the following set of first-order
accurate, perturbed equations for mantle flow dynamics:

mass conservation ∇ · (ρou) = 0 (24)

momentum conservation ∇ · τ −∇P1 + ρo∇φ1 + ρ1∇φo = 0 (25)

gravity ∆φ1 = −4πGρ1 (26)

Notice in equation (25), that in addition to the driving buoyancy forces (ρ1∇φo), there
also exist self-gravitational loads (ρo∇φ1) due to the perturbed gravity field. The above
equations must be supplemented by the linear relationship (12) between stress and strain-
rate, which is valid for an isotropic rheology:

Newtonian constitutive equation τ = η
(−→
∇u + u

←−
∇ − 2

3
I ∇ · u

)

(27)

2.3.2 Spectral treatment of the mantle flow equations

A classical technique for solving the dynamical flow equations in 3-D spherical geometry
is the spectral Green function method, in which all flow variables are expressed in terms
of spherical harmonic basis functions introduced in equation (1) above (e.g., Hager &
O’Connell 1981; Richards & Hager 1984; Ricard et al. 1984; Forte & Peltier 1987,1991).
The spectral Green functions provide a very convenient mathematical description of the
instantaneous relationship between the mantle density anomalies and the viscous flow
field, as well as all surface manifestations of the internal flow dynamics.

The spectral method is employed here for solving the coupled equations of mass, mo-
mentum and gravity conservation (eqs. 24-26), supplemented by the viscous constitutive
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relation (27). The method follows that initially developed by Forte & Peltier (1991) for
gravitationally consistent compressible flow in spherical geometry. Other treatments of
compressible mantle flow in spherical geometry have been presented by Corrieu et al.
(1995), Panasyuk et al. (1996), and Defraigne (1997). An overview of the method is pre-
sented below and we refer to Forte & Peltier (1991), Forte &Woodward (1997a) and Forte
(2000) for complete details.

One begins by rewriting equations (24-27), in the following Cartesian tensor form:

uk,k = − ρ̇o

ρo
ur

σij,j + ρo (φ1),i − ρ1gor̂ = 0

σij = −P1δij + η
(

ui,j + uj,i − 2
3
δijuk,k

)

(φ1),kk = −4πGρ1















(28)

in which ρ̇o = dρo/dr, ur = r̂ · u, and (φo),i = −gor̂. It should also be noted that in these
equations the total stress tensor σ is used, rather than the deviatoric stress τ used in (25).

The determination of a solution to the system of tensor equations (28) in spherical ge-
ometry may be greatly simplified by using an elegant mathematical technique described
by Phinney & Burridge (1973). Following their technique, one introduces a new coordi-
nate system defined by the following complex basis vectors in spherical geometry:

ê− = 1√
2

(

ϑ̂− ı ϕ̂
)

ê0 = r̂

ê+ = − 1√
2

(

ϑ̂ + ı ϕ̂
)















(29)

in which ı =
√
−1, and r̂ , ϑ̂ , ϕ̂ are the unit basis vectors for the standard spherical polar

coordinate system.
Following Phinney & Burridge (1973), all the tensors appearing in the original system

(28) are rotated into the coordinate system defined by (29), thereby yielding the following
covariant tensor form of the dynamical equations:

uα,β eαβ = − ρ̇o

ρo
u0

σαβ,γ eβγ + ρo (φ1)
,α − ρ1go δα

0 = 0
σαβ = −P1 eαβ + η

(

uα,β + uβ,α
)

− 2
3
η
(

uδ,γ eδγ

)

eαβ

(φ1)
,αβ eαβ = −4πGρ1















(30)

in which the Greek indices denote the coordinate directions in system (29) and therefore
range over the values (−1, 0, +1). The quantities eαβ , eαβ , and δα

β are the contravariant,
covariant, and mixed tensor representations of the Cartesian identity tensor δij.

The velocity (uα) and stress (σαβ) components are expanded in terms of the generalised
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spherical functions Y N m
ℓ (Phinney & Burridge 1973) such that:

u−(r, θ, φ) =
∑

ℓ,m

U−m
ℓ (r) Y −1 m

ℓ (θ, φ),

u0(r, θ, φ) =
∑

ℓ,m

U0 m
ℓ (r) Y 0 m

ℓ (θ, φ),

u+(r, θ, φ) =
∑

ℓ,m

U+ m
ℓ (r) Y +1 m

ℓ (θ, φ), (31)

σαβ(r, θ, φ) =
∑

ℓ,m

T αβm
ℓ (r) Y

(α+β) m
ℓ (θ, φ) (α, β = −1, 0, +1). (32)

All scalar fields involved in the governing equations (30) are expanded in terms of ordi-
nary spherical harmonics. For example,

ρ1(r, θ, φ) =
∑

ℓ,m

(ρ1)
m
ℓ (r) Y m

ℓ (θ, φ) ,

φ1(r, θ, φ) =
∑

ℓ,m

(φ1)
m
ℓ (r) Y m

ℓ (θ, φ) , (33)

where Y m
ℓ ≡ Y 0 m

ℓ .
We can simplify subsequent numerical computations by non-dimensionalise all rele-

vant physical variables using the following transformations:

r = d r, go(r) = go g(r), η(r) = ηo η(r), ρ1 = (∆ρ) ρ1,

T αβ = (∆ρ go d) T αβ, Uα =
(

∆ρ go d2

ηo

)

Uα, φ1 =
(

4πGRo

2ℓ+1
∆ρ d

)

φ1

}

(34)

in which the original variables are on the left of each equation and the non-dimensional
variables are on the right. The scaling quantities we have used are defined as follows:

d = 2888 km ≡ radial thickness of mantle
go = 9.82 m/s2 ≡ mean surface gravitational acceleration
∆ρ = 0.1 Mg/m3 ≡ characteristic subducted slab density anomaly
ηo = 1021 Pa s ≡ Haskell [1935] reference value
Ro = 6371 km ≡ mean surface radius of Earth

Substituting expressions (31-32, 33) into the flow equations (30), and using the nondi-
mensionalization scheme (34) as well as the orthogonality properties of the generalised
spherical harmonics (as in Phinney & Burridge 1973), yields two independent systems of
flow equations. The first system, governing a poloidal geometry of flow, consists of the
following six coupled, first-order, ordinary differential equations:

d

dr

















U0

UP

T 0

T P

φ1

g1

















=





















− [2+r(ρ̇o/ρo)]
r

Ω1

r
0 0 0 0

−2Ω1

r
1
r

0 ηo

η
0 0

4[3+r(ρ̇o/ρo)]
r2

η
ηo

−6Ω1

r2

η
ηo

0 Ω1

r
3

2ℓ+1
ρ̇o

ρ
0

−4Ω1[3+r(ρ̇o/ρo)]
r2

η
ηo

2[Ω2

2
+3Ω2

1]
r2

η
ηo
−2Ω1

r
−3

r
0 0

0 0 0 0 0 1

0 0 0 0 ℓ(ℓ+1)
r2 −2

r





































U0

UP

T 0

T P

φ1

g1

















+
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0
0

g(r)
0
0

(−2ℓ + 1) d
Ro

















ρ1(r)

∆ρ
(35)

in which ρ̇o = dρo/dr, Ω1 = [ℓ(ℓ + 1)/2]1/2, Ω2 = [(ℓ− 1)(ℓ + 2)/2]1/2, and ρ is Earth’s mean
density (5.5143× 103 kg/m3).

The second system, governing a toroidal geometry of flow, consists of the following
two coupled, first-order, ordinary differential equations:

d

dr

(

UT

T T

)

=

(

1
r

1
η

2Ω2

2
η

r2 −3
r

)

(

UT

T T

)

(36)

The flow, stress and gravity variables in the poloidal and toroidal flow systems (35,36)
are all dependent on the same harmonic degree ℓ and order m (this dependence has been
dropped for notational convenience). The dependence of these variables on the harmonic
coefficients of flow( 31), stress (32), and gravitational potential (33) are:

U P (r) = U+(r) + U−(r)

U T (r) = U+(r)− U−(r)

T 0 = T 0 0(r) +
3

2ℓ + 1

ρ0(r)

ρ
φ1(r)

T P = T 0+(r) + T 0−(r)

T T = T 0+(r)− T 0−(r) . (37)

2.3.3 Internal boundary conditions

The determination of a unique solution of the system of flow equations (35,36) derived in
the preceding section requires the specification of appropriate boundary conditions at the
top and bottom surfaces of the mantle and internal matching conditions at all material
interfaces within the mantle. We will consider the latter first since the surface boundary
conditions can be obtained as a special case of the internal matching conditions.

The need for internal boundary conditions in solving for mantle flow is evident upon
inspection of the depth variation of mantle density ρo(r) (see Fig. 5) given by the PREM
seismic reference model (Dziewonski & Anderson 1981). The PREM density profile is
characterised by two major jumps at depths of 400 km and 670 km. These density jumps
have long been interpreted as manifestations of phase-change boundaries (e.g., Jeanloz
& Thompson 1983) which presumably also affect the depth variation of viscosity at these
depths (e.g., Sammis et al. 1977).
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Figure 5: Depth dependent mean density in the mantle from the PREM seismic reference
model (Dziewonski & Anderson 1981).

We now derive the matching conditions which must be satisfied when characteris-
tic properties of the mantle, in particular density, viscosity and chemical composition,
change very rapidly across phase-change or chemical horizons in the mantle. We will ap-
proximate such rapid changes as mathematical discontinuities. Denoting the mean (i.e.
horizontally averaged) location of the internal material boundary as r = ri, geographic
variations in the radial location (i.e., deflections) of the boundary are then represented by:

r = ri + δri , where we assume

∣

∣

∣

∣

δri

ri

∣

∣

∣

∣

≪ 1 (38)

A discontinuous change in density across an internal boundary implies that:

(

dρo

dr

)

r=ri

=
[

ρo(r
+
i )− ρo(r

−
i )
]

δ(r − ri) (39)

By virtue of this last expression, the density perturbation due to the boundary deflection
δri is given by the following sheet-mass anomaly:

δρi = −
(

dρo

dr

)

r=ri

δri = −[ρo(r
+
i )− ρo(r

−
i )] δri δ(r − ri) (40)

This last expression shows that an internal boundary deflection gives rise to a mantle
buoyancy source which may be approximated by a delta-function load and the corre-
sponding density perturbation is, in non-dimensional terms:

ρ1(r)

∆ρ
= − [ρo(r

+
i )− ρo(r

−
i )]

∆ρ

δri

d
δ(r − ri) (41)

This expression shows that from a purely fluid mechanical perspective, the dynamical ef-
fect of a deformed phase-change boundary is indistinguishable from integrated buoyancy
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forces elsewhere in the mantle. If the material interface instead corresponds to a chemical
discontinuity in the mantle, the fluid-mechanical buoyancy effect is also the same. The
main distinction between the deflection-induced buoyancy of phase-change and chemi-
cal discontinuities is that the former is controlled by thermodynamics (i.e., the Clapeyron
slope) whereas the the latter is due to the change in intrinsic chemical buoyancy across
the interface.

The matching condition for the radial component of the flow field is obtained by inte-
grating the first row in system (35) from r−i = ri−ǫ to r+

i = ri +ǫ, taking the limit ǫ→ 0. In
terms of the radial flow variable U0, this yields the following mass conservation equation:

ρo(r
+
i )U0(r+

i ) = ρo(r
−
i )U0(r−i ) (42)

where ρo(r
+
i ) and ρo(r

−
i ) are themantle density immediately above and below thematerial

boundary, respectively. If the internal boundary corresponds to a chemical discontinuity,
then we must impose a zero radial velocity condition :

U0(r+
i ) = 0 = U0(r−i ) (43)

The matching condition for the tangential mantle flow velocity is obtained by integrating
the second equation in (35), which yields the following continuity of the tangential flow
variable UP :

UP (r+
i ) = UP (r+

i ) (44)

This continuity of tangential flow also applies to the case of a internal chemical boundary.
The internal matching condition for the radial stress T 0 across a deformed material

interface is obtained by integrating the third row in system (35), in which we substitute
result (41) into the buoyancy force term ρ1/∆ρ in expression (35) thereby yielding:

T 0(r+
i )− T 0(r−i ) = ∆u(ri) +

3

2ℓ + 1

[

ρo(r
+
i )− ρo(r

−
i )

ρ

]

φ1(ri)

− [ρo(r
+
i )− ρo(r

−
i )]

∆ρ

δri

d
g(ri) (45)

in which the term

∆u(ri) = − 2

ri

(

η(r+
i ) + η(r−i )

ηo

)

[

U0(r+
i )− U0(r−i )

]

(46)

arises from the discontinuous change in radial flow (see expression 42) due to a density
jump across an internal (phase-change) boundary. This term vanishes in the case of a
chemical discontinuity since expression (43) then applies. The matching condition for the
tangential stress T P is obtained by integrating the fourth equation in (35):

T P (r+
i )− T P (r−i ) = −Ω1∆u(ri) (47)

The term ∆u gives rise to an apparent discontinuity in tangential stress and this is again
a consequence of our mathematical treatment of a discontinuous change in radial flow
across a material interface. The significance of this apparent jump in tangential stress
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was first noted by Corrieu et al. (1995) and a subsequent analysis by Forte & Woodward
(1997a) determined that effect of this discontinuity was negligible. In the case of a chemi-
cal discontinuity the term ∆u vanishes and the tangential stress is then continuous across
the interface.

Integration of the fifth row in (35) across the material interface located at mean radius
ri yields the following matching condition for the perturbed gravitational potential:

φ1(r
+
i ) = φ1(r

−
i ) (48)

The matching condition for the perturbed gravitational acceleration is obtained by sub-
stituting expression (41) into the buoyancy force term ρ1/∆ρ in (35) and then integrating
the sixth row of this system, yielding the following non-dimensional expression:

g1(r
+
i )− g1(r

−
i ) = (2ℓ + 1)

(

d

Ro

)

[ρo(r
+
i )− ρo(r

−
i )]

∆ρ

δri

d
(49)

in which g1 = dφ1/dr.
The internal matching conditions for the toroidal components of mantle flow are read-

ily obtained following the same procedure employed for the poloidal flow. Integration of
the first row in system (36) yields the following continuity of toroidal flow across any
(phase-change or chemical) interface:

UT (r+
i ) = UT (r−i ) (50)

Similarly, an integration of the second row in (36) yields the following continuity of tan-
gential stress across any internal material interface:

T T (r+
i ) = T T (r−i ) (51)

.

2.3.4 Boundary conditions at Earth’s solid surface

It will be assumed that the spherically symmetric, hydrostatic reference Earth model is
overlain by a global ocean layer which is 3 km thick, as in PREM (Dziewonski &Anderson
1981). PREM’s crust and seismic lithosphere (LID) are combined into a single mechanical
layer containing the same total mass as the two PREM layers assuming, for simplicity,
that both layers deform and move together in response the buoyancy driven flow in the
mantle. The top surface of the combined crust-lithosphere is located at radius r = 6368
km and the base is located at radius 6291 km (i.e., at a depth of 80 km below the surface
of the global ocean layer). This redefined lithosphere has mass density of 3.2 Mg/m3.

In view of the very complicated mechanical and rheological properties of the crust and
underlying lithosphere, in particular the tectonic plates, it is clear that the flow theory
developed here with a purely depth-dependent viscosity cannot provide an adequate
representation of the near-surface dynamics. An approximate treatment of the effect of
surface tectonic plates is presented below in section (2.3.7). In the meantime, we will
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consider here two different boundary conditions of relevance at the solid-surface: free-slip
and no-slip.

Earth’s bounding surface at r = a = 6368 km is a chemical (compositional) boundary
across which there can be no flow and hence the matching condition (43) is applicable:

U0(a−) = 0, for both free-slip& no-slip (52)

where a− denotes the radial location r = a − ǫ. We can, to first-order accuracy, ignore
surface deflections (i.e. topography) in specifying the boundary conditions on the flow.

The condition for the surface tangential flow UP (a−) in the lithosphere is:

UP (a−) =

{

UP (a−) to be determined, for free-slip

0 for no-slip
(53)

In the case of the surface toroidal flow, the boundary condition is:

UT (a−) = V T (54)

in which V T is determined from the coupling of surface poloidal and toroidal flows due
to the presence of rigid surface tectonic plates. The mathematical formulation of this
coupling and an explicit expression for V T is presented below in section (2.3.7).

We can apply the radial stress T 0 matching condition in (45) to the deformed surface
boundary which, by virtue of conditions (52), becomes:

T 0(a−)− T 0(a+) =
3

2ℓ + 1

[

∆ρa

ρ

]

φ1(a
−)−

[

∆ρa

∆ρ

]

δa

d
g(a) (55)

where we have defined the density jump across the solid surface:

∆ρa = ρo(a
−)− ρo(a

+) = 3.2− 1.0 Mg/m3 = 2.2 Mg/m3 (56)

and where we have also invoked the universally valid condition (48) for the vertical con-
tinuity of the perturbed gravitational potential.

In expression (55), T 0(a+) corresponds to the radial stress in the global ocean layer. If
we assume that the viscosity in the global ocean layer is negligible (i.e., η/ηo → 0), then
the second row in system (35) yields:

T P (r) = 0 , throughout the ocean layer (57)

and therefore, by virtue of this result, the fourth row in system (35) yields:

T 0(r) = 0 , throughout the ocean layer (58)

Substituting result (58) into expression (55) yields the desired radial-stress boundary con-
dition at the surface:

T 0(a−) =
3

2ℓ + 1

[

∆ρa

ρ

]

φ1(a
−)−

[

∆ρa

∆ρ

]

δa

d
g(a) valid for free-slip & no-slip (59)
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in which δa is the flow-induced vertical deflection of the solid surface (i.e., dynamic sur-
face topography).

The condition for the surface poloidal tangential stress T P (a−) is as follows:

T P (a−) =

{

0 for free-slip

T P (a−) to be determined, for no-slip
(60)

and the condition for the surface toroidal tangential stress is:

T T (a−) = T T (a−) to be determined (61)

On the basis of the general result (48), and using result (49), the surface matching
conditions for the perturbed gravitational potential and acceleration are:

φ1(a
−) = φ1(a

+) (62)

g1(a
−) = g1(a

+) + (2ℓ + 1)

(

d

Ro

)[

∆ρa

∆ρ

]

δa

d
(63)

The ocean-layer potential and gravity fields φ1(a
+) and g1(a

+), respectively, are not inde-
pendent of each other and, as shown in Forte & Peltier (1991), they are both related to the
perturbed potential at the surface of the global ocean layer, φ1(r = Ro):

φ1(a
+) = Pℓ φ1(Ro) (64)

g1(a
+) = Gℓ φ1(Ro) (65)

in which the ocean-layer response functions Pℓ and Gℓ are as follows:

Pℓ =

(

Ro

a

)ℓ+1

− 3

2ℓ + 1

ρw

ρ̄

[

(

Ro

a

)ℓ+2

−
(

a

Ro

)ℓ−1
]

(66)

Gℓ = −(ℓ + 1)
d

Ro

(

Ro

a

)ℓ+2

+
3

2ℓ + 1

ρw

ρ̄

d

Ro

[

(ℓ + 1)

(

Ro

a

)ℓ+3

+ ℓ

(

a

Ro

)ℓ−2
]

(67)

in which ρw ≡ ρ(a+) = 1 Mg/m3 is the density of the global ocean layer.
Substitution of results (64-65) into expressions (62-63) yields the complete surface

boundary conditions for the gravitational variables:

φ1(a
−) = Pℓ φ1(Ro) , valid for free-slip & no-slip (68)

g1(a
−) = Gℓ φ1(Ro) + (2ℓ + 1)

(

d

Ro

)[

∆ρa

∆ρ

]

δa

d
, valid for free-slip & no-slip (69)

It should be noted that expression (68) should also be substituted into the radial stress
condition (59).
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The complete set of free-slip and no-slip surface boundary conditions, in terms of
the poloidal-flow vector v(r) = [U0(r), UP (r), T 0(r), T P (r), φ1(r), g1(r)]

Tr (where Tr
denotes transposition) employed in system (35), are:

Free-slip:

v(a−) = UP (a−)y1 + φ1(Ro)y2 +
∆ρa

∆ρ

δa

d
y3 (70)

in which the surface basis vectors are:

y1 =

















0
1
0
0
0
0

















y2 =

















0
0

3
2ℓ+1

∆ρa

ρ
Pℓ

0
Pℓ

Gℓ

















y3 =



















0
0

−g(a)
0
0

(2ℓ + 1)
(

d
Ro

)



















(71)

No-slip:

v(a−) = T P (a−)y′
1 + φ1(Ro)y2 +

∆ρa

∆ρ

δa

d
y3 (72)

in which the surface basis vectors are:

y′
1 =

















0
0
0
1
0
0

















and y2 , y3 are defined in (71) (73)

The surface boundary conditions (54,61) for the toroidal flow vector u(r) = [UT (r), T T (r)]Tr

which is governed by system (36) are:

u(a−) = V T z1 + T T (a−) z2 (74)

in which the two surface basis vectors are:

z1 =

(

1
0

)

z2 =

(

0
1

)

(75)

2.3.5 Boundary conditions at CMB

The derivation of the boundary conditions which apply at the core-mantle boundary
(CMB), located at mean radius r = b = 3480 km, is almost identical to the derivation
for the surface boundary conditions in the preceding section. The liquid outer core is re-
garded as having negligible viscosity relative to the mantle and hence the CMB is treated
as a purely free-slip boundary. The only difference concerns the application of gravita-
tional matching conditions at r = b, since we must now deal with the interaction between
a deformed CMB and a compressible, hydrostatic core.
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A detailed treatment of the gravitational perturbations maintained in a hydrostatic
core is presented in Forte & Peltier (1991), where it is shown that perturbed gravitational
acceleration at the top of the core (i.e., immediately below the CMB) is determined by
the perturbed potential at the bottom of the mantle (i.e., immediately above the CMB), as
follows:

g1(b
−) = Rℓ φ1(b

+)

where b− denotes the radial location r = b−ǫ (i.e., bottom side of the CMB) and b+ denotes
r = b + ǫ (i.e., top side of the CMB). Rℓ is a numerically determined coefficient which is
obtained on the basis of the compressible density profile throughout the core (Forte &
Peltier 1991).

The complete set of free-slip CMB boundary conditions in terms of the poloidal-flow
vector v(r) = [U0(r), Up(r), T 0(r), T P (r), φ1(r), g1(r)]

Tr in system (35) is:

v(b+) = UP (b+)x1 + φ1(b
+)x2 +

∆ρb

∆ρ

δb

d
x3 (76)

in which the CMB basis vectors are:
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(77)

where ∆ρb = ρo(b
+)− ρ(b−) = −4.434 Mg/m3 is the density jump across the CMB and δb

is the deflection (i.e., dynamic topography) of the CMB.
The free-slip CMB boundary condition for the toroidal-flow vector u(r) = [UT (r), T T (r)]Tr

in system (36) is:
u(b+) = UT (b+)w1 (78)

in which the CMB basis vector is:

w1 =

(

1
0

)

(79)

2.3.6 Determining viscous flow Green functions

The solution to the system of flow equations (35) may expressed in terms of Green func-
tions which relate the poloidal flow velocity and the stress tensor at an arbitrary radius
r = r0 to a delta-function density load ρ1(r) = δ(r − r′) at any other radius r = r′.

For arbitrarily complex density (e.g., as in PREM) and viscosity profiles, the poloidal-
flow system of equations (35) must be integrated numerically. When r 6= r′, this linear
system of equations is homogeneous:

d

dr
v(r) = MP (r) v(r) , (when r 6= r′) (80)
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in which MP (r) is the 6 × 6 matrix appearing in system (35). We can propagate each of
the surface boundary vectors yi (i = 1, 2, 3) in (71) or (73), by numerically integrating (80)
from the surface (r = a−) downward to r = r′, stopping along the way at all internal
material boundaries (r = ri) where we apply the internal matching conditions described
previously (section 2.3.3). We can similarly propagate each of the CMB basis vectors xi

(i = 1, 2, 3) in (77) from the CMB (r = b+) upward to r = r′. The basic procedure is
summarised schematically in Fig. 6.
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Figure 6: Numerical integration of poloidal-flow system of equations (35) (left) and
toroidal-flow system of equations (36) (right). The poloidal-flow basis vectors yi and xi

are defined in expressions (71,73,77). The toroidal-flow basis vectors are defined in ex-
pressions (75,79).

At the location r = r′ of the delta-function load we apply the matching conditions
(42, 44, 45, 47, 48, 49). For each of these matching conditions we employ the correspond-
ing components of the poloidal-flow vectors v(r′+) and v(r′−), which are obtained from
expressions (70), (72) and (76):

v(r′+) =

{

UP (a−)y1(r
′
+)

T P (a−)y′
1(r

′
+)

}

+ φ1(Ro)y2(r
′
+) +

∆ρa

∆ρ

δa

d
y3(r

′
+) (81)

and

v(r′−) = UP (b+)x1(r
′
−) + φ1(b

+)x2(r
′
−) +

∆ρb

∆ρ

δb

d
x3(r

′
−) (82)
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in which the surface and CMB basis vectors, yi(r
′
+) and xi(r

′
−), have been obtained by

the numerical integration of (80), as outlined above. The application of the six matching
conditions then yields the following system of equations:

Ap = δp (83)

in which

p =
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d
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(84)

Each column of the 6× 6 matrix A in (83) involves the corresponding basis vectors yi(r
′
+)

and xi(r
′
−) in (81-82).

For any given position r = r′ of the delta-function load we obtain a system of equa-
tions given by (83) which can be simply solved to find the unknown vector p. The el-
ements of p define the poloidal-flow impulse response (kernel) functions of the mantle
which are discussed below in section (2.4).

The toroidal-flow system (36) may be written as the following homogeneous equation:

d

dr
u(r) = MT (r) u(r) (85)

in which MT (r) is the 2 × 2 matrix appearing in system (36). We can propagate each of
the surface boundary vectors zi (i = 1, 2) in (75), by numerically integrating (85) from the
surface (r = a−) downward to r = b+, stopping along the way at all internal material
boundaries (r = ri) where we apply the internal matching conditions (50,51). The basic
procedure is summarised schematically in Fig. 6. The resulting flow vector u(b+) is:

u(b+) = V T z1(b
+) + T T (a−) z2(b

+) (86)

which must be matched to the toroidal flow in expression (79)

u(b+) = UT (b+)w1 (87)

We thereby obtain the following simple system:

Bt = δt (88)

in which

t =

(

UT (b+)
T T (a−)

)

and δt = V T z1(b
+) (89)

Each column of the 2 × 2 matrix B in (88) involves the corresponding basis vectors w1

and −z2 in (86-87). Expression (88) shows that the toroidal flow throughout the mantle
is ’driven’ by the surface toroidal flow V T generated by rotating tectonic plates, which
are themselves driven by the buoyancy-induced poloidal flow in the mantle. This surface
coupling of poloidal and toroidal flow, due to the presence of surface tectonic plates, is
discussed in the next section.
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2.3.7 Incorporating tectonic plates as a surface boundary condition

The boundary conditions at the top of the mantle are more complex because of the pres-
ence of tectonic plates. If the plates are assumed to be an integral part of the underlying
mantle flow and they fully participate in the flow, then a simple free-slip surface bound-
ary condition would be appropriate. This free-slip assumption has often been employed
in tomography-based flow studies (e.g., Hager et al., 1985; Forte & Peltier, 1987; Hager &
Richards, 1989; King & Masters, 1992). If, on the other hand, we recognise that the plates
are mechanically and rheologically distinct from the underlying mantle, then a more re-
alistic surface boundary condition that explicitly treats the effective rigidity of plates is
required.

Essentially rigid tectonic plates are a fundamental aspect of convection dynamics in
the Earth and, although their treatment lies beyond classical fluid mechanics theory, their
dynamical impact on thermal convection in the mantle must be considered. One ap-
proach for modelling the coupling of convection and plates, developed by Ricard &Vigny
(1989) and Gable et al. (1991), is based on an explicit treatment of the net vertical torque
(or horizontal force) acting on the base of each surface plate. This method is a direct ex-
tension of the torque-balance analysis originally employed by Hager & O’Connell (1981)
in their modeling of dynamic plate motions. The fundamental underlying assumption
in the method developed by Ricard & Vigny is that the plate boundaries are completely
stress-free. This method has been employed in a number of mantle-flow models over the
past few years (e.g. Corrieu et al. 1994; Lithgow-Bertelloni & Richards 1998).

An alternative method for coupling the motions of rigid surface plates to buoyancy in-
ducedmantle flowwas developed by Forte and Peltier (1991,1994). Only themain aspects
of this method will be summarised here. It may be shown that for a given geometry of
surface plates, the internal density anomalies ρ1(r, θ, φ) are partitioned into two families:

ρ1(r, θ, φ) = ρ̂1(r, θ, φ) + ρ̄1(r, θ, φ), (90)

where the density perturbations ρ̂1(r, θ, φ) are obtained through a projection operator P̂
as follows:

ρ̂1
t
s (r) = P̂s t, l m(r) ρ1

m
l (r) (91)

The calculation of the projection operator P̂s t, l m(r) is given in Forte and Peltier (1994) and
it depends on the geometry of the surface plates. The other component of the density
anomalies ρ̄1(r, θ, φ) is simply given by the expression:

ρ̄1
t
s (r) = ρ1

t
s (r)− ρ̂1

t
s (r) (92)

As Forte & Peltier (1994) show, the poloidal mantle flow field produced by the component
ρ̂1 is consistent with the geometry of possible rigid plate motions at the surface whereas
the one produced by ρ̄1 is orthogonal to any possible plate motion. In other words, the
plates participate in the underlying flow driven by ρ̂1, while they resist the flow produced
by ρ̄1. Hence, free-slip (T p(rs) = 0) and no-slip (V p(rs) = 0) surface boundary conditions
are applied to model the internal flows driven by ρ̂1 and ρ̄1, respectively.

A simple application of the plate-projection operator is illustrated in Fig. 7, where we
compare the buoyancy driven plate motions predicted on the basis of two hypothetical
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hot thermal anomalies under the Pacific plate which differ only in their spatial relation-
ship to the nearby East Pacific Ridge (EPR). Both ’plumes’ are constructed in an ad hoc
manner as rectangular shaped, negative density anomalies with constant amplitude -0.1
g/cm3 located in the depth range 400 to 750 km, equivalent to -2.6% relative density per-
turbation at 525 km depth. This amplitude is much greater than expected on the basis of
the seismic tomography models (see Fig. 12 below) and is only used here for the purpose
of illustration. The predicted mantle flow field varies linearly with the amplitude of the
driving density anomaly, therefore a ’plume’ anomaly which is ten times smaller (-0.01
g/cm3) will produce surface motions ten times smaller than those shown in Fig. 7.

In the absence of plates, both of the hypothetical plumes (Figs. 7a,b) produce the same
amplitude and pattern of horizontal flow divergence at the surface of the mantle (com-
pare Figs. 7c,d). The situation changes radically when the present-day configuration of
rigid plates is imposed at the top of themantle. The plumewhich is offset from the nearest
plate boundary (Fig. 7a), the EPR, drives a mantle flow field which produces only a small
fraction of the horizontal surface divergence obtained in the absence of plates (compare
Figs. 7c,e). The plate projection operator (91) maps most of the original plume density
anomaly ρ1 into the no-slip family of density anomalies ρ̄1 which cannot produce observ-
able plate motions. According to the alternative plate-motion theory employed by Ricard
& Vigny (1989), this hypothetical plume anomaly produces flow-induced driving torques
on the overlying Pacific plate which nearly cancel because the centre of the upwelling is
too far away from the nearest plate boundary. In contrast, the plume located under the
EPR (Fig. 7b) produces horizontal divergence of the Pacific and Nazca plates with an am-
plitude comparable to that obtained in the absence of plates (compare Figs. 7d,f). In this
case, a substantial fraction of the original density anomaly ρ1 was mapped into the free-
slip family of density anomalies ρ̂1. It should be noted that mutual interactions amongst
the plates will generate non-zero far-field plate divergence and convergence (Fig. 7f, for
example in the IndianOcean)which is a consequence of the assumed rigidity of the plates.

From the perspective of the tectonic plates, the existence of a null-space corresponding
to the family of internal density anomalies ρ̂1 (92) which cannot drive observable motions
(as in Fig. 7e) constitutes a fundamental non-uniqueness in the interpretation of plate
tectonics. The present-day plate motions (DeMets et al. 1990), or the geologic reconstruc-
tions of the history of plate motions (Gordon & Jurdy 1986), therefore provide completely
non-unique constraints on the mantle density anomalies generated by the thermal con-
vection process. Other convection-related observables (e.g. global gravity anomalies) are
required to constrain the density anomalies which fall into the null-space ρ̂1. A futher
exploration of the implications of the non-unique interpretation of plate motions is pre-
sented by Forte & Peltier (1994).
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Figure 7: Interaction of hypothetical upwelling plumes with rigid surface plates. Maps
(a) and (b) show two rectangular shaped, negative density anomalies (the hypothetical
’plumes’) with amplitude -0.1 g/cm3 assumed to be constant in the depth interval 400 to
750 km. Both plume anomalies have been expanded in terms of spherical harmonics up
to degree and order 32. Maps (c) and (d) show the corresponding patterns of predicted
horizontal surface divergence for a hypothetical mantle with a free-slip surface boundary
(no plates) where the predicted motions are calculated up to harmonic degree 32. The
mantle flow calculation was carried out assuming a depth-dependent viscosity variation
shown below in Fig. 9. Maps (e) and (f) show the corresponding patterns of plate diver-
gence (up to harmonic degree 32) when the present-day configuration of rigid tectonic
plates is imposed as a surface boundary condition in the mantle flow calculation.

The plate motions which are driven by the buoyancy induced (poloidal) mantle flow
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will necessarily posses a toroidal component. This toroidal component is directly coupled
to the poloidal component of the plate motions as follows:

(r̂ ·∇× v)t
s = Cs t, l m (∇H · v)m

l , (93)

in which the spherical harmonic coefficients of the radial vorticity of the plate velocity
field v are linearly dependent on the harmonic coefficients of the horizontal divergence of
the plate motions. The vorticity and divergence fields are themselves directly dependent
on the toroidal and poloidal scalar representations, respectively, of the plate velocity field
(Forte & Peltier 1987). It is important to note that expression (93) is only valid for toroidal
harmonic degree s ≥ 2 and that the coupling matrix Cs t, l m is dependent only on the
geometry of the plates (Forte & Peltier 1994).

As discussed above in section (2.3.6), the viscous coupling between the plates and
underlying mantle will result in the downward propagation of the surface toroidal flow
into the mantle. The surface boundary condition (74) requires that the toroidal mantle
flow match the toroidal component of plate motions, which is equivalent to their radial
vorticity (93):

V T = UT (a−) =
ı ra

Ω1
(r̂ ·∇× v)m

l , (94)

where ı =
√
−1 and ra = a is the mean radius of the solid surface (6368 km).

The Green function solutions of the poloidal and toroidal flow equations (see section
2.3.6), may be used to describe the viscous response of the mantle to an arbitrary distri-
bution of internal density anomalies ρ1 as follows:

(

Uα m
ℓ (r)

T αβ m
ℓ (r)

)

=

∫ a

b

(

U
α
ℓ (r, r′)

T
αβ
ℓ (r, r′)

)

ρ1
m
ℓ (r′) dr′ , (95)

where Uα m
ℓ (r) and T αβ m

ℓ (r) are the generalised spherical harmonic coefficients of the ve-

locity and stress fields (31, 32), respectively, and U
α
ℓ (r, r′) and T

αβ
ℓ (r, r′) are the correspond-

ing (poloidal) Green functions.
Tectonic plates maywell represent themost extrememanifestation of lateral variations

in rheology in the convecting mantle. The plate coupling procedure described above thus
provides an explicit means of incorporating the dynamical impact of such extreme lateral
heterogeneity in the flow calculations which will be presented below. It is nonetheless
true that the equations (35,36) governing flow in the mantle do not include lateral varia-
tions in viscosity and hence buoyancy forces will only directly excite a poloidal flow. In
these calculations, toroidal mantle flow is excited passively from above, via the rotating
surface plates.

A more general flow theory which models the effects of lateral viscosity variations
throughout the mantle (e.g., Martinec et al. 1993; Forte & Peltier 1994) is required to de-
scribe the direct excitation of toroidal flow by mantle buoyancy forces. The dynamical
implications of large-amplitude lateral viscosity variations throughout the mantle have
been studied by Moucha et al. (2007). Despite the considerably more complex theory
(relative to equations 35,36) needed to calculate flow in a 3-D viscosity field, Moucha et
al. find the impact on predicted surface observables such as topography and geoid are
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relatively small. This finding provides important support for the modelling and interpre-
tation of geodynamic observables using the plate-coupled flow theory with purely depth
dependent viscosity in the mantle. The results obtained on the basis of this simplified
treatment of mantle dynamics will be presented in the sections which follow.

2.4 Geodynamic response functions for the mantle

The theoretical relationship between the mantle density anomalies and the principal con-
vection related surface observables (i.e. geoid or gravity anomalies, dynamic surface and
CMB topography, plate motions) may be summarised in terms of geodynamic response
or kernel functions . (See Hager & Clayton 1989, and Forte 2000, for reviews.) These
kernel functions are calculated in the spherical harmonic spectral domain using the vis-
cous flow Green functions defined in expression (95). The principal assumption we shall
make in calculating these geodynamic kernels - in addition to the assumption of purely
depth dependent viscosity below the plates - is that the 670 km seismic discontinuity is
not a barrier to radial mantle flow. This whole-mantle flow assumption has been recently
subjected to a series of direct tests based on joint inversions of global seismic and geody-
namic data sets (Simmons et al. 2006). It is found that the most satisfactory reconciliation
of the global seismic and geodynamic constraints on 3-Dmantle structure is obtainedwith
whole-mantle flow and significantly poorer fits are obtained with flow models which as-
sume vertical flow barriers at 670 km depth or within the lower mantle (e.g. at 1800 km
depth).

The geoid kernels Gℓ(η; r) relate the spherical harmonic coefficients of the nonhydro-
static geoid field, δNm

ℓ , to the spherical harmonic coefficients of the density perturbations
δρm

ℓ (r) as follows:

δNm
ℓ =

3

(2ℓ + 1)ρ̄

∫ rs

rcmb

Gℓ(η; r) δρm
ℓ (r) dr , (96)

where ρ̄ = 5.515 Mg/m3 is the mean density of the Earth, rs is the mean radius of the solid
surface, and rcmb is the mean radius of the CMB. The geoid kernels are a functional of
the non-dimensional radial mantle viscosity profile η(r)/ηo. The free-air gravity anomaly
coefficients δGm

ℓ are related to the nonhydrostatic geoid coefficients δNm
ℓ as follows:

δGm
ℓ = (ℓ− 1)

go

Ro
δNm

ℓ , (97)

where g0 = 9.82 m/s2 (982,000 mGal) is the mean gravitational acceleration at Earth’s sur-
face and R0 = 6371 km is Earth’s mean radius. Through the combination of equations (96)
and (97), we can relate the gravity anomaly coefficients to the internal density perturba-
tions.

As discussed in the preceding section, a dynamical flow model which incorporates
rigid plate motions must include mixed free-slip and no-slip surface boundary condi-
tions. In the calculation of the flow-related observables, we must therefore determine the
separate contributions provided by the density anomalies δρ̂ and δρ̄ which are convolved
with kernel functions derived with free-slip and no-slip surface boundaries, respectively.
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For example, in the case of the nonhydrostatic geoid anomalies, we rewrite equation (96)
as follows:

δNm
ℓ =

3

(2ℓ + 1)ρ̄

∫ rs

rcmb

[

Ĝℓ(η; r) δρ̂m
ℓ (r) + Ḡℓ(η; r) δρ̄m

ℓ (r)
]

dr , (98)

where the geoid kernels Ĝℓ(η; r) and Ḡℓ(η; r) are calculated with free-slip and no-slip sur-
face boundaries, respectively. As shown in Forte & Peltier (1994), the density anomalies
δρ̂ are spatially correlated with the positions of divergent or convergent plate boundaries.
Subducting slabs and mid-ocean ridge heterogeneity are therefore resolved as part of the
δρ̂ anomalies.

The surface topography kernel functions Tℓ(η; r) relate the spherical harmonic coeffi-
cients of the flow-induced surface topography δam

ℓ to the spherical harmonic coefficients
of the internal density anomalies as follows:

δam
ℓ =

1

∆ρmo

∫ rs

rcmb

[

T̂ℓ(η; r) δρ̂m
ℓ (r) + T̄ℓ(η; r) δρ̄m

ℓ (r)
]

dr , (99)

where ∆ρmo = 2.2 Mg/m3 is the density jump across the mantle-ocean boundary and

T̂ℓ(η; r) and T̄ℓ(η; r) are calculated with free-slip and no-slip surface boundaries, respec-
tively.

Similarly, the spherical harmonic coefficients of the flow-induced CMB topography
δbm

ℓ may be expressed in terms of CMB topography kernels Bℓ(η; r) as follows:

δbm
ℓ =

1

∆ρcm

∫ rs

rcmb

[

B̂ℓ(η; r) δρ̂m
ℓ (r) + B̄ℓ(η; r) δρ̄m

ℓ (r)
]

dr , (100)

where B̂ℓ(η; r) and B̄ℓ(η; r) are calculated with free-slip and no-slip surface boundaries,
respectively, and ∆ρcm = −4.43 Mg/m3 is the density jump across the CMB. As in the
case of the nonhydrostatic geoid in equation (98), the dependence on viscosity of the
predicted surface and CMB topography appears explicitly through the non-dimensional
profile η(r)/ηo.

Surface plate velocities v may be characterised by their horizontal divergence field
∇H · v (Forte & Peltier 1987). The horizontal divergence kernels Dℓ(η; r) relate the spher-
ical harmonic coefficients of the predicted plate divergence (∇H · v)m

ℓ to the spherical
harmonic coefficients of the density perturbations as follows:

(∇H · v)m
ℓ =

go

ηo

∫ rs

rcmb

Dℓ(η; r) δρ̂m
ℓ (r) dr . (101)

in which the free-slip component of the mantle density anomalies δρ̂, defined above in
expression (91), is required to model the surface divergence of the plates. We also note
the presence of the reference scaling value of viscosity η0. This presence implies that plate
motions, unlike the other observables in equations (96-100), will be dependent on the
absolute value of mantle viscosity.
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2.5 Depth dependence of mantle viscosity

Understanding the long time scale rheology of the mantle as represented by its effective
viscosity, is a central and enduring problem in global geophysics. The diverse methods
and data sets which have been employed to constrain mantle viscosity have been a source
of ongoing contention and debate. The importance and intensity of this debate are an apt
reflection of the fundamental role of mantle viscosity in controlling a wide array of geo-
dynamic processes. For example, millennial time scale glacial isostatic adjustment (GIA)
processes such as Pleistocene and Holocene sea-level variations and related anomalies in
Earth’s gravitational field and rotational state are known to be strongly dependent on the
depth dependence of mantle viscosity. On much longer, million to hundred-million year
time scales, viscosity exerts fundamental control on the dynamics of mantle convection
and on the corresponding evolution of the thermal and chemical state of Earth’s interior.
The very long time scale implications of mantle viscosity also include fundamental sur-
face geological and geophysical processes, such as global scale epeirogeny and associated
sea level changes, global geoid anomalies and tectonic plate motions.

The spatial variation of viscosity in Earth’s mantle can, in principle, be determined
from a consideration of the microphysical properties which control the steady state creep
of mantle rocks (e.g. Nicolas & Poirier 1976; Sammis et al. 1977). In practise, however,
the microphysical models of mantle viscosity depend on knowledge of a number of crit-
ical physical properties, such as grain size and activation volume and energy, which are
poorly known in the mantle and hence require extrapolations of laboratory creep experi-
ments which greatly exceed the physical conditions (i.e. pressure, temperature, or creep
rate) under which these experiments were originally performed. It is nonetheless possible
to show, on the basis of microphysical considerations, that the global horizontal average
viscosity may increase by up to three orders of magnitude across the mantle (e.g. Ranalli
2001). More precise determinations of the radial viscosity profile require additional con-
straints from geophysical data sets which are sensitive to the long term rheology of the
mantle.

The first andmost influential geophysical contribution to our understanding of mantle
viscosity is Haskell’s (1935) study of Fennoscandian post-glacial uplift which was found
to require an average viscosity of 1021 Pa s down to a depth approximately equal to the
horizontal dimension of the surface load (about 1000 to 1500 km). McConnell’s (1968)
spectral analysis of the Fennoscandian uplift data led to the inference that mantle viscos-
ity increased significantly with depth while at the same time still satisfying the Haskell
average. The Haskell average value of viscosity over the upper 1000 to 1200 km of the
mantle was also supported in subsequent work by O’Connell (1971). These initial studies
which supported the compatibility between the Haskell constraint on viscosity and sig-
nificant increases of viscosity in the lower mantle were displaced by subsequent analyses
by Cathles (1975) and Peltier & Andrews (1976) who concluded that viscosity was nearly
constant from the base of the lithosphere to the CMB. This view of mantle viscosity char-
acterised by only moderate increases with depth was reinforced in later studies involving
larger GIA data sets (e.g. Wu & Peltier 1983; Tushingham & Peltier 1991). A review of the
GIA constraints on viscosity may be found in Mitrovica (1996).

The first inferences of the depth variation of mantle viscosity based on surface data
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sets associated with mantle convection (e.g. Hager 1984; Richards & Hager 1984; Ricard
et al. 1984) disagreed strongly with the GIA inferences of mantle viscosity which pre-
vailed since the earliest studies by Cathles, Peltier and collaborators. These convection-
based analyses of viscosity, in particular the first study of Earth’s global geoid anomalies
by Hager (1984), suggested a large increase of viscosity in the sub-lithospheric mantle
with an approximately factor of 30 increase in the average viscosity of the lower mantle
relative to the upper mantle. This conclusion was supported by subsequent studies by
Forte & Peltier (1987) and Forte et al. (1991) who extended the viscous flow modelling
to include the plate velocities. The geodynamic inferences for significant (one to two or-
der of magnitude) increases in the average viscosity of the lower mantle relative to that
of the upper mantle were reinforced by subsequent analyses carried out by Ricard et al.
(1989), Ricard & Vigny (1989), Hager & Clayton (1989), Forte & Peltier (1991), Forte et al.
(1993a,1994), King & Masters (1992), Corrieu et al. (1994), Thoraval & Richards (1997).
A survey of some of the earliest viscosity inferences derived on the basis of global geoid
anomalies are shown in Fig. 8. Reviews of mantle viscosity inferences based on either
convective flow or GIA data sets may by found in King (1995) and Kaufmann & Lambeck
(2000).
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Figure 8: A survey of previous geodynamic inferences of depth dependent mantle vis-
cosity. Frames (a) to (f) show relative (nondimensional) variations of viscosity with depth
derived on the basis of global long wavelength geoid anomalies. Frames (g) to (i) show
radial (absolute) viscosity profiles inferred on the basis of GIA data (in addition to geoid
data in the case of frame g). The GIA data sets constrain the absolute value of viscosity
whereas the steady-state viscous flow modelling of the geoid data only constrain relative
variations of viscosity with depth. (Figure adapted from Kaufmann & Lambeck, 2000)

Additional geodynamic considerations which suggest a substantial increase of viscos-
ity with depth are based on a wide variety of analyses which include the stability of the
hot spot reference frame (e.g. Richards 1991; Quéré & Forte 2006), long-term rates of polar
wander (e.g. Sabadini & Yuen 1989; Spada et al. 1992; Richards et al. 1997; Steinberger &
O’Connell 1997), and the planform of mantle convection (e.g. Zhang & Yuen 1995; Bunge
et al. 1996; Forte & Mitrovica 2001).

The inference of mantle viscosity from convection-related surface data, considered in
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the context of tomography-based mantle flow models, was initially carried out through
an effectively trail-and-error fitting procedure (e.g., Forte & Peltier 1987,1991; Hager &
Clayton 1989; Forte et al. 1993). Subsequently, a number of formal mathematical inver-
sions of the geodynamic data were carried out (e.g., Forte et al. 1991; Ricard & Wuming
1991; King & Masters 1992; Corrieu et al. 1994; King 1995; Forte & Mitrovica 1996; Kido et
al. 1998; Forte 2000; Panasyuk & Hager 2000). The viscosity profiles obtained by inverting
geodynamic data sets ( Fig. 8) are all characterised by strong overall increases in viscosity
with depth, but it is also clear that there are significant differences in the detailed character
of these viscosity inferences. There are many factors which can contribute to these differ-
ences and they include, most notably, the use of: different tomography-based inferences
of mantle density anomalies; different combinations of geodynamic data (e.g., geoid only,
geoid plus plate motions, geoid plus dynamic topography, all of the above); different
inversion methods (e.g., Monte-Carlo, Bayesian, genetic, Occam algorithms). The formu-
lation of the viscous flow models themselves can also play a critical role in explaining
these differences, since it is known that the use of different surface boundary conditions
(e.g. free-slip, no-slip, freely rotating tectonic plates) will lead to rather different viscosity
inferences (e.g. Thoraval & Richards 1997). Finally, the limited resolving power of the
geodynamic constraints precludes a direct interpretation of viscosity at any given depth
in the mantle. For example, Forte &Mitrovica (2001) found that the combined constraints
provided by global free-air gravity anomalies, tectonic plate motions, and excess ellip-
ticity of the CMB could only resolve average values of viscosity in rather broad depth
intervals.

The discordant viscosity inferences derived from either GIA or convection-related
data sets were initially regarded as evidence for the transient nature of mantle viscos-
ity over the time scales that separate these two processes (e.g. Sabadini et al. 1985; Peltier
1985). The necessity for time-dependent viscosity in the mantle was later weakened by
two independent analyses of the GIA data sets. The first argument against transient vis-
cosity was provided by an analysis of differential late Holocene sea-level high-stands in
the Australian region by Nakada and Lambeck (1989), who showed that these GIA data
required a nearly two order of magnitude increase of viscosity across the mantle. The sec-
ond independent argument was provided byMitrovica (1996), who showed that previous
inferences of a nearly constant-viscosity mantle (e.g. Wu & Peltier 1983; Tushingham &
Peltier 1991) were conditioned by a misinterpretation of the original Haskell (1935) con-
straint. The latter was erroneously assumed to apply only to the top 670 km of the mantle
(i.e. the upper mantle), rather than to the average value of viscosity down to depths of
about 1000 to 1500 km (Mitrovica 1996).

The recognition that GIA data are not incompatible with large increases of mantle vis-
cosity with depth spurred new efforts to reconcile GIA and convection data sets with a
single profile of mantle viscosity. The first efforts were undertaken by Forte & Mitrovica
(1996) and Mitrovica & Forte (1997). Despite the very different time and spatial scales
over which these processes operate, these authors found that it was possible to simulta-
neously explain both decay times associated with the post-glacial uplift of Hudson Bay
and Fennoscandia, and long-wavelength free-air gravity anomalies associated with man-
tle convection with a single viscosity profile characterised by an approximately two order
of magnitude increase with depth which also satisfied the original Haskell constraint on
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mantle viscosity. These joint GIA-convection inversions culminated in the recent study
by Mitrovica & Forte (2004) in which the range of viscosity profiles consistent with both
families of surface data are summarised below in Fig. reffig-visc. The convection data
employed in these viscosity inversions are shown in Fig. 2. The GIA data include the
Fennoscandian relaxation spectrum (FRS) and a set of decay times determined from the
postglacial sea-level history in Hudson Bay and Sweden.

The inverted viscosity profiles are characterised by a three orders of magnitude in-
crease from the upper mantle (mean value of ∼ 4 × 1020 Pa s) to a high-viscosity (> 1023

Pa s) peak at 2000 km depth. Below 2000 km, the viscosity shows a significant, two to
three orders of magnitude, reduction toward the CMB. Similar radial variations in lower-
mantle viscosity have been inferred in other independent studies (e.g., Ricard &Wuming
1991). The preferred viscosity profile (solid black line, Fig. 9) provides an optimal fit
to both (GIA and convection) families of data and, unless stated otherwise, this profile
will be employed to calculate all convection related related surface observables presented
below.
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Figure 9: Results of inversions of the GIA and convection data sets. Full details of the
inversions are presented in Mitrovica & Forte (2004). The convection data are interpreted
in terms of a tomography-based mantle flow model in which the density anomalies are
derived from the Grand (2002) tomography model (Fig. 3b). The thick gray lines illustrate
the range of allowable values of mantle viscosity which are consistent with the joint GIA-
convection constraints. The solid black line (model V1) is the preferred viscosity profile,
on the basis of the Grand (2002) tomography model, which provides an optimal fit to the
entire suite of geodynamic data. The dashed line (model V2) was inverted with strong
smoothing constraints applied across the horizon separating upper and lower mantle and
yields slightly lower fits to the combined GIA-convection data sets (Forte et al. 2010).
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The geodynamic response or kernel functions calculated on the basis of the preferred
mantle viscosity profile (model ‘V1’ in Fig. 9) are illustrated below in Fig. 10. Comparing
the free-slip and no-slip geoid kernels, we note that the largest contribution from density
anomalies in the top half of the mantle is provided by those anomalies δρ̂ which are ef-
ficient in driving observable plate motions. These anomalies correspond to subducting
slabs and upper-mantle plumes below the mid-ocean ridges. In the bottom half of the
mantle the density anomalies belonging to the δρ̄ family provide the largest contribution
to the surface geoid or gravity anomalies. These δρ̄ anomalies produce no observable
plate motions. At sufficiently short horizontal wavelengths (corresponding to harmonic
degrees ℓ ≥ 32) we note that the distinction between δρ̂ and δρ̄ anomalies begins to dis-
appear: both provide equal contributions to the surface geoid or gravity anomalies. The
free-slip and no-slip surface topography kernels show that the density anomalies δρ̄ pro-
vide the strongest contribution to dynamic surface topography, especially at long hori-
zontal wavelengths (corresponding to the degree range ℓ = 2 − 8). At short horizontal
wavelengths, the distinction between the two classes of density anomalies again ceases to
be important.
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Figure 10: Geodynamic kernel functions. The geodynamic response functions shown
here are calculated on the basis of the preferred GIA-convection-inferred viscosity profile
shown in frame a (same as model ‘V1’ in Fig. 9). The kernels corresponding to harmonic
degrees ℓ = 1, 2, 4, 8, 16, 32 are identified by the legend in frame b (repeated below in
frame e). The horizontal divergence kernels, defined in (101), are shown in frame b. The
gravity kernels, defined in (98), for free-slip and no-slip surface boundary conditions are
shown in frames c and d, respectively.
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Figure 10: - continued - The surface topography kernels, defined in (99), for free-slip and
no-slip conditions are shown in frames e and f, respectively. The kernels for the dynamic
CMB topography, defined in (100) are shown in frame g and h for free-slip and no-slip
conditions respectively.
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3 Modelling geodynamic observables with seismic tomog-

raphy

Wewill now consider the extent to which the 3-Dmantle structure resolved in recent seis-
mic tomographic models may be used to explain the global convection-related data sets
shown in Fig. 2. The geodynamic response functions obtained on the basis of the pre-
ferred radial viscosity profile (Fig. 10) will be used to establish the connection between
the seismically inferred heterogeneity in the mantle and the surface geodynamic observ-
ables. A broad selection of seismic shear-velocity models, obtained in independent stud-
ies using diverse and complementary seismic data and using different seismic modelling
and inversion techniques, will be employed here. Seismic shear velocity heterogeneity is
the initial focus of this tomography-based modelling because it is expected that S-wave
anomalies δVS will be most sensitive to the temperature anomalies maintained by the
mantle convection process (e.g., Röhm et al. 2000; Forte & Perry 2000; Forte et al. 2002).

3.1 Seismic heterogeneity models

The S-wave tomography models employed here are, in chronological order: model S20A
(isotropic version) from Ekström & Dziewonski (1998), model S20RTS from Ritsema et al.
(1999), model SAW24 fromMégnin & Romanowicz (2000), model SB4 L18 fromMasters et
al. (2000), model TX2002 fromGrand (2002), andmodel J362D28 fromAntolik et al. (2003).
The spatial variation of seismic heterogeneity in these S-wave models is parametrised
in terms of a wide assortment of basis functions, ranging from B-splines to piecewise-
discontinuous layers in the radial direction and spherical harmonics to equal-area cells in
the horizontal direction.

To facilitate a direct comparison amongst these seismic heterogeneity models and the
subsequent usage of the models in viscous flow calculations, all models have been pro-
jected onto a common set of radial and horizontal basis functions as follows:

δVS

VS
=

32
∑

k=0

20
∑

ℓ=1

+ℓ
∑

m=−ℓ

kc
m
ℓ Tk(x) Y m

ℓ (θ, ϕ) (102)

in which Tk(x) are Chebyshev polynomials in the normalised radius x = (2r − rsurf −
rcmb)/(rsurf − rcmb) and Y m

ℓ are ordinary spherical harmonics. Notice that all models are
expanded up to order 32 in the radial Chebyshev polynomials and up to degree 20 in the
surface spherical harmonics.

When each of the S-wave heterogeneity models are projected onto the representa-
tion (102), the depth variations of the root-mean-square (rms) amplitudes of the velocity
anomalies are shown in Fig. 11. Here we note that, with the exception of the top 300 km in
the mantle, the average amplitudes of the relative perturbations of seismic shear velocity
δVS/VS show significant differences in the mantle, especially in the transition zone region
(400 - 1000 km depth) and at the base of the mantle (2500 - 2891 km depth).
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Figure 11: Amplitude of S-wave heterogeneity in the mantle. Plotted here is the root-
mean-square (rms) amplitude of relative perturbations of seismic shear velocity obtained
from the following tomography models: J362D28 (Antolik et al. 2003), SAW24 (Mégnin
& Romanowicz 2000), S20A-Iso (Ekström & Dziewonski 1998), TX2002 (Grand 2002),
S20RTS (Ritsema et al. 1999), SB4 L18 (Masters et al. 2000). All tomography models have
been projected onto the spatial parametrisation given by expression (102).

3.2 Mantle density anomalies

The mantle density anomalies required in modelling the convection-related surface ob-
servables may be derived from the seismic tomography models using experimental and
theoretical results from mineral physics (e.g., Karato 1993; Čadek et al. 1994; Wang &
Weidner 1996; Sobolev et al. 1997; Stacey 1998; Zhang & Weidner 1999; Trampert et al.
2001; Stixrude & Lithgow-Bertelloni 2001; Jackson 2001; Karato & Karki 2001; Oganov et
al. 2001a,b). This derivation would, however, require that the amplitudes of seismic ve-
locity anomalies are well constrained and that all relevant mineralogical variables in the
mantle (e.g., reference composition, temperature and equation of state parameters) are
sufficiently well known. To satisfy all these requirements at the same time is a great chal-
lenge, but efforts to simultaneously interpret mantle density and seismic velocity anoma-
lies using mineral physics data are showing much promise (e.g., Forte et al. 1994, Forte &
Woodward 1997b, Simmons et al. 2007, 2009, 2010).

An alternative method for inferring mantle density anomalies is based on the direct
inversion of the convection-related geophysical observables (e.g. Forte et al. 1993; Cor-
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rieu et al. 1994; Karpychev & Fleitout 2000; Forte & Perry 2000; Panasyuk & Hager 2000;
Forte & Mitrovica 2001; Pari 2001; Deschamps et al. 2001). This approach is useful when
contending with significant uncertainties in the amplitudes of the seismic anomalies, as
is evident in Fig. 11. This figure underscores a key concern, namely that the use of min-
eral physics data to translate the seismic anomalies can lead to large variations in the
estimated mantle density anomalies, depending on the choice of tomography model. To
avoid this difficulty, it is preferrable to carry out simultaneous inversions of all global geo-
dynamic data (Fig. 2) to determine an optimal velocity-density scaling factor dln ρ/dln VS

(e.g., Forte & Mitrovica 2001), such that:

δρ

ρ
=

(

dln ρ

dln VS

)

δVS

VS

, (103)

where δVS/VS are shear velocity anomalies obtained from a tomography model and δρ/ρ
are the relative perturbations in density which are constrained by the geodynamic data.
This approach has also been employed in other tomography-based mantle flow models
(e.g., Hager & Clayton 1989; Corrieu et al. 1994; Panasyuk & Hager 2000).

The geodynamic data provide direct, linear constraints on the density anomalies in
the mantle (see equations 98 – 100), which may be generically expressed as follows:

δOm
ℓ = fℓ

∫ a

b

Kℓ(η; r′) (ρ1)
m
ℓ (r′) dr′ ≈ fℓ

N
∑

i=1

Kℓ(η; ri) (ρ1)
m
ℓ (ri) wi (104)

in which δOm
ℓ are the spherical harmonic coefficients of a geodynamic observable (e.g.,

geoid or free-air gravity anomalies), Kℓ(η; r′) is the corresponding kernel function and fℓ

is a factor which depends on the geodynamic observable (see, for example, equation 98).
The numerical calculation of integrals is usually carried out with equivalent finite sums,
such as in (104) wherewi is a weighting termwhich depends on the numerical summation
algorithm (e.g., Gauss-Legendre quadrature). On the basis of expression (103), we may
further rewrite equation (104) as:

δOm
ℓ = fℓ

N
∑

i=1

wiKℓ(η; ri) ρo(ri)

(

δVS

VS

)m

ℓ

(ri)

(

dln ρ

dln VS

)

(ri) (105)

in which δVS/VS are the shear-velocity anomalies in the mantle and dln ρ/dln VS is the
corresponding velocity-to-density scaling which is assumed to vary with depth in the
mantle.

Expression (105) provides the basis for a discrete, linear inversion of the geodynamic
data δOm

ℓ to find an optimal velocity-to-density scaling profile dln ρ/dln VS. A series of
Occam inversions (Constable et al. 1987) of the geodynamic data (Fig. 2) was carried out
to find the smoothest family of dln ρ/dln VS profiles which are consistent with the data.
For each Occam inversion, a different seismic shear-wave tomography model (Fig. 11)
was employed and in each case the same geodynamic kernel functions (Fig. 10) were
employed to relate the mantle heterogeneity to the geodynamic data. The results of these
inversions are summarised in Fig. 12 which shows the optimal profiles of dln ρ/dln VS
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and the resulting depth variation of the rms amplitude of the lateral density anomalies
implied by expression (103).
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Figure 12: Occam inversions for mantle density anomalies. In the top frame are shown
the optimal Occam inferred velocity-density scaling profiles for each of the tomography
models illustrated in Fig. 11. The legend identifying the results is in the bottom frame.
For comparison are shown (thick dashed gray lines) a series of theoretical estimates of the
depth variation of dln ρ/dln VS in the lower mantle obtained by Karato & Karki (2001) on
the basis of mineral physics data. These mineral physical estimates assume that both den-
sity and seismic anomalies are produced by temperature perturbations in the mantle. In
the bottom frame are shown the resulting inferences of the depth variation of the rms den-
sity anomalies which are calculated on the basis of the seismic shear velocity anomalies
using expression (103).
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Mineral physics estimates of the velocity-density scaling (Fig. 12) show significant
departures from the scaling profiles derived from the Occam inversions. As discussed
above, this discrepancy may in part arise from the inadequate resolution of seismic het-
erogeneity in the mantle – especially in the mid-mantle region between 1000 km and 2000
km depth – and it may also arise from inadequacy of the theoretical assumptions inherent
in the mineral physics estimates. In the latter case, the chief assumption which may be
deficient is the dominance of thermal effects on both the seismic and density anomalies
in the mantle. Compositional effects, especially on mantle density heterogeneity, may be
one important explanation for the deviations from theoretical mineral physics estimates
based on temperature effects alone (e.g., Stacey 1998). The relative importance of ther-
mal and compositional contributions to mantle heterogeneity can be directly tested in the
context of simultaneous inversions seismic and geodynamic data (Simmons et al. 2007,
2009, 2010) and these will be discussed below.

3.3 Predicted tectonic plate motions

In this and the next few sections we will consider the extent to which the tomography-
based inferences of mantle density anomalies presented in Fig. 12 provide a successful
explanation of the convection-related surface observables (Fig. 2). We begin here with
a consideration of convection-induced tectonic plate motions. The predicted horizontal
divergence of the plate motions, calculated on the basis of expresion (101) and using the
kernels in Fig. 10b, are presented in Fig. 13 alongside the observed NUVEL-1 divergence
of the plates. A detailed spectral comparison between the predicted and observed plate
divergence is shown on Fig. 14.
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Figure 13: Tomography-based horizontal divergence of the tectonic plates. (a) Observed
NUVEL-1 horizontal plate divergence (DeMets et al. 1990). (b) – (g) show the surface
divergence predicted on the basis of tomography models J362D28 (Antolik et al. 2003),
SAW24 (Mégnin & Romanowicz 2000), S20A-Iso (Ekström & Dziewonski 1998), TX2002
(Grand 2002), S20RTS (Ritsema et al. 1999), SB4 L18 (Masters et al. 2000), using the corre-
sponding dln ρ/dln VS scaling profiles in Fig. 12. All shear-velocity heterogeneity models
have been projected onto the common parametrisation in exptression (102) prior to calcu-
lating the predicted plate motions. (h) The ’mean’ prediction of plate divergence obtained
by calculating the statistical sample average of all the predictions (b) – (g). The observed
and predicted plate motions shown here are all synthesized from spherical harmonics up
to degree and order 32. 48
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Figure 14: Spectral comparison of predicted and observed plate divergence. Top frame
shows the degree variance, as defined in equation (3), of the observed and predicted plate
divergence fields shown in Fig. 13. Bottom frame shows the degree correlations, as defined
in equation (4). The black solid and dashed lines represent the 95% and 99% confidence
levels, respectively.

A quantitative summary of the overall agreement between the predicted and observed
plate divergence, quantified in terms of total rms amplitude, total spatial correlation and
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Table 1: Comparison of observed† and predicted‡ horizontal plate divergence
Model NUVEL∗ J362D28 SAW24 S20A-Iso TX2002 S20RTS SB4 L18 Mean
rms 2.8 1.3 1.1 1.5 1.5 1.6 1.2 1.3
correl – 0.77 0.74 0.83 0.78 0.80 0.74 0.82
var. red. – 50% 44% 60% 56% 59% 45% 55%

Note: ’rms’ = root-mean-square amplitude, expressed here in units of 10
−8a−1

’correl’ = global cross-correlation, ’var. red.’ = variance reduction
† Data and predictions (shown in Fig. 13) are synthesized from spherical harmonics up to degree 32.
‡ Predictions employ the tomography model indicated at the top of each column and they use the corre-

sponding velocity-density scalings in Fig. 12.
∗ Horizontal divergence of the plates is derived from the NUVEL-1 (DeMets et al. 1990) description of

present-day plate velocities.

variance reduction, is provided in Table 1. The variance reduction is defined as follows:

var. red. = 100%×
[

1−
∑

ℓ

∑+ℓ
m=−ℓ(O − P )m

ℓ
∗(O − P )m

ℓ
∑

ℓ

∑+ℓ
m=−ℓ Om

ℓ
∗Om

ℓ

]

(106)

where (O − P )m
ℓ and Om

ℓ are the harmonic coefficients of the difference between the ob-
served and predicted fields and the observed fields, respectively.

An important characteristic of the predicted divergence fields shown in Fig. 13, which
is also confirmed in Table 1, is the subdued amplitude of the predicted fields relative to
the data. As will be seen in the next few sections, all tomography-based predictions of
geodynamic observables which are calculated on the basis of the optimal Occam-inverted
density-velocity scaling profiles (Fig. 12) are systematically reduced in amplitude relative
to the amplitude of the observed fields. This systematic bias to low predicted ampli-
tudes is a natural consequence of the least-squares misfit criterion which is employed in
almost all inversion algorithms (including the Occam approach) which leads to signifi-
cantly damped inferences of the dln ρ/dln VS scaling profiles.

It can be readily shown that the inherent damping of tomography-based inferences of
dln ρ/dln VS arises as a consequence of poorly resolved 3-D seismic structure in geody-
namically important regions of the mantle, such as the mid-mantle region (e.g., Forte et
al. 1994). We can illustrate this in an inverse problem in which we seek, for the sake of
simplicity, the best-fitting constant dln ρ/dln VS value. As shown in expression (104), the
predicted convection-related observables are linearly dependent on the internal density
perturbations in the mantle. By virtue of expression (105), we may write

d(θ, ϕ) =

(

dln ρ

dln VS

)

p(θ, ϕ) ,

where d(θ, ϕ) represent the surface data and p(θ, ϕ) is the corresponding mantle-flow pre-
diction assuming dln ρ/dln VS = 1. We can then show that the optimal dln ρ/dln VS value
that minimises the least-squares misfit between data and the predictions is given by the
following expression:

dln ρ

dln VS
=

σd

σp
c(d, p) , (107)
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where σd and σp are the rms amplitudes of the data and the predictions,

σ2
d =

1

4π

∫∫

S1

| d(θ, ϕ) |2 d2S , σ2
p =

1

4π

∫∫

S1

| p(θ, ϕ) |2 d2S ,

and

c(d, p) =
1

4π

∫∫

S1

d(θ, ϕ)p(θ, ϕ) d2S , (108)

where all integrals are defined over the surface of the unit sphere S1. The quantity c(d, p)
defined in (108) is the cross-correlation between the data and the predictions. Equation
(107) thus shows that the inferences of dln ρ/dln VS will be directly proportional to the
spatial correlation between the surface data and the corresponding geodynamic integral
of the 3-D structure in the seismic tomography model. As previously shown by Forte et al.
(1994) this correlation may be significantly degraded if the 3-D seismic structure is poorly
resolved.

3.4 Predicted free-air gravity anomalies

Tomography-based mantle flow models of Earth’s nonhydrostatic gravitational potential
have almost exclusively been based on analyses of the equivalent geoid anomalies, be-
ginning with the earliest studies by Richards & Hager (1984), Hager et al. (1985) and con-
tinuing to recent studies (e.g., Panasyuk & Hager 2000). Since the global geoid anomalies
are strongly dominated by horizontal wavelengths corresponding to harmonic degrees
ℓ = 2, 3 they will effectively constrain only the longest wavelength components of 3-D
mantle structure. To avoid this very-long wavelength bias we consider here a represen-
tation of the nonhydrostatic geopotential in terms of equivalent global free-air gravity
anomalies (see expression 97). The free-air gravity anomalies contain a more evenly bal-
anced representation of the different horizontal wavelengths in the nonhydrostatic geopo-
tential (i.e., a ’flatter’ amplitude spectrum).

The observed and predicted gravity anomaly fields, calculated on the basis of expres-
sions (97, 98) and using the kernels in Fig. 10c,d, are presented in Fig. 15. A comparison of
the predicted and observed gravity anomalies in the spectral domain is shown in Fig. 16.
In Table 2 is presented a detailed summary of the global agreement between the predicted
and observed gravity anomalies. In contrast to the predicted plate divergence discussed
in the preceding section, we note that the amplitudes of the predicted gravity anomaly
fields are somewhat less muted (compare Tables 1 and 2). The overall agreement with the
gravity data (in terms of variance reduction) is however poorer than the plate divergence
fits because of the decreased spatial correlation between the predictions and the data.
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Figure 15: Tomography-based global free-air gravity anomalies. (a) Observed EGM96
anomalous free-air gravity field (Lemoine et al. 1998). (b) – (g) show the free-air anoma-
lies predicted on the basis of tomography models J362D28 (Antolik et al. 2003), SAW24
(Mégnin & Romanowicz 2000), S20A-Iso (Ekström & Dziewonski 1998), TX2002 (Grand
2002), S20RTS (Ritsema et al. 1999), SB4 L18 (Masters et al. 2000), using the corresponding
dln ρ/dln VS scaling profiles in Fig. 12. All shear-velocity heterogeneity models have been
projected onto the common parametrisation in exptression (102) prior to calculating the
gravity anomalies. (h) The ’mean’ free-air gravity anomaly field obtained by calculating
the statistical sample average of all the predictions (b) – (g). The observed and predicted
gravity anomalies shown here are all synthesized from spherical harmonics up to degree
and order 20. 52
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Figure 16: Spectral comparison of predicted and observed free-air gravity anomalies. Top
frame shows the degree variance, as defined in equation (3), of the observed and predicted
gravity anomaly fields shown in Fig. 15. Bottom frame shows the degree correlations, as
defined in equation (4). The black solid and dashed lines represent the 95% and 99%
confidence levels, respectively.
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Table 2: Comparison of observed† and predicted‡ free-air gravity anomalies
Model EGM96∗ J362D28 SAW24 S20A-Iso TX2002 S20RTS SB4 L18 Mean
rms 14.8 10.4 11.2 10.6 11.4 10.5 8.9 9.3
correl – 0.55 0.62 0.54 0.64 0.58 0.42 0.64
var. red. – 28% 37% 26% 39% 33% 15% 41%

Note: ’rms’ = root-mean-square amplitude, expressed here in units of mGal

’correl’ = global cross-correlation, ’var. red.’ = variance reduction
† Data and predictions (shown in Fig. 15) are synthesized from spherical harmonics up to degree 20.
‡ Predictions employ the tomography model indicated at the top of each column and they use the corre-

sponding velocity-density scalings in Fig. 12.
∗ The global free-air gravity anomalies are derived from the EGM96 geopotential model (Lemoine et al.

1998).

3.5 Predicted dynamic surface topography

The term ’dynamic topography’ is here defined to include all contributions to the topog-
raphy of Earth’s solid surface which arise from mantle convection. There has been some
controversy as to origin and amplitude of Earth’s dynamic topography, with some confu-
sion as to how this dynamic topography should even be defined (e.g., Gurnis 1990; Forte
et al. 1993b,c; Gurnis 1993). As will be discussed below, the interpretation of dynamic sur-
face topography employed here, namely the topography arising from all density anoma-
lies in the mantle (including those in the lithosphere), is not universally accepted. A
detailed review and analysis of the opposing schools of thought in this debate has been
presented by Pari (2001).

Numerous studies over the past three decades have focussed exclusively on the to-
pography of ocean floor and the general conclusion is that this topography can be almost
completely explained in terms of shallow, thermally induced density anomalies which
arise from the age-dependent cooling of the oceanic lithosphere (e.g. Parson & Sclater
1977; Stein & Stein 1992). The oceanic bathymetry is modelled in terms of isostatic com-
pensation of density anomalies in the oceanic lithosphere and hence many studies have
regarded this form of thermal isostasy as not being a ’dynamic’ contribution to surface
topography. An adequate review of the extensive literature dealing with this interpreta-
tion of seafloor topography is well beyond the scope of this chapter, but recent studies
of age-dependent oceanic bathymetry with extensive references to past analyses may be
found in Doin & Fleitout (2000) and in Crosby et al. (2006).

Whether or not the thermal isostatic signal in seafloor bathymetry may be regarded
as ’static’ or ’dynamic’ depends on the temporal variability of the structure of the upper
thermal boundary layer (i.e., the lithosphere in oceanic regions) due to time-dependent
mantle convection. A purely mechanical interpretation of the instantaneous, present-
day isostatic compensation of thermal anomalies in the lithosphere ignores this back-
ground time-dependence. The lateral temperature variations in the cooling lithosphere
are essentially maintained by a balance between vertical heat conduction and horizontal
heat advection (e.g., Parsons & McKenzie 1978; Jarvis & Peltier 1982) and the latter is
clearly a dynamic effect. In the absence of convection, the upper thermal boundary layer

54



and the corresponding variations in oceanic bathymetry will vanish. The importance of
time-dependent changes in the structure of the lithosphere, and hence the correspond-
ing changes in the contribution to surface topography, is highlighted by the significant
changes in plate tectonic velocities and plate geometries in the Cenozoic (e.g., Lithgow-
Bertelloni & Richards 1998) which suggest significant departures from steady-state con-
ditions.

In the absence of convection, the only contribution to surface topography arises from
the isostatic compensation of lateral variations in crustal thickness and crustal density.
Earth’s present-day topography is therefore the superposition of the crustal isostatic to-
pography and the dynamic topography – as defined here – due to density anomalies in
the mantle which are maintained by mantle convection (Forte et al. 1993b). The crustal
isostatic topography is large and it explains most of the observed present-day topography
on Earth (e.g., Forte & Perry 2000; Pari & Peltier 2000). The dynamic topography is ob-
tained by subtracting the crustal isostatic topography from the observed topography and
this therefore requires an accurate model of crustal structure. This requirement presents
a major challenge because of the uneven and incomplete seismic sampling global crustal
thickness and also because of the significant uncertainties in constraining the density of
the crust. Currently, the most complete compilation of global crustal heterogeneity is
model CRUST2.0 (Bassin et al. 2000). This crustal model was employed in retrieving the
dynamic surface topography presented above in Fig. 2b.

The observed and predicted dynamic topography fields, calculated on the basis of ex-
presions (99) and using the kernels in Fig. 10e,f, are presented in Fig. 17. A quantitative
spectral comparison of the predicted and observed dynamic topography is shown in Fig.
18. In Table 3 is presented a detailed summary of the match between the predicted and
observed topography fields. The topography kernels (Fig. 10e,f) show that near-surface
density anomalies provide the strongest contributions to the predicted surface topogra-
phy (Fig. 17) and that they will be in near-isostatic equilibrium, where perfect isostatic
compensation corresponds to a kernel value of -1. We note that in the case of density
anomalies which effectively see a no-slip surface boundary (given by expression 92), the
condition of near-isostasy extends to depths of about 200 km (see Fig. 10f).
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Figure 17: Tomography-based global dynamic surface topography. (a) Dynamic surface
topography estimated by removing isostatically compensated crustal heterogeneity – de-
scribed by model CRUST2.0 (Bassin et al. 2000) – from the observed present-day surface
topography. (b) – (g) show the dynamic surface topography predicted on the basis of
tomography models J362D28 (Antolik et al. 2003), SAW24 (Mégnin & Romanowicz 2000),
S20A-Iso (Ekström & Dziewonski 1998), TX2002 (Grand 2002), S20RTS (Ritsema et al.
1999), SB4 L18 (Masters et al. 2000), using the corresponding dln ρ/dln VS scaling profiles
in Fig. 12. All shear-velocity heterogeneity models have been projected onto the common
parametrisation in exptression (102) prior to calculating the dynamic topography. (h) The
’mean’ dynamic surface topography field obtained by calculating the statistical sample
average of all the predictions (b) – (g). The crust-corrected and predicted dynamic topog-
raphy shown here are all synthesized from spherical harmonics up to degree and order
20.
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Figure 18: Spectral comparison of predicted and observed (crust-corrected) dynamic sur-
face topography. Top frame shows the degree variance, as defined in equation (3), of the
observed and predicted topography fields shown in Fig. 17. Bottom frame shows the de-
gree correlations, as defined in equation (4). The black solid and dashed lines represent
the 95% and 99% confidence levels, respectively.

In view of the debate concerning the magnitude of the thermal isostatic contributions
to surface topography in oceanic regions, it is helpful to explore the relative importance
of shallow (i.e. lithospheric) and deep-mantle (i.e. sub-lithospheric) buoyancy using the
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Table 3: Comparison of observed† and predicted‡ dynamic surface topography
Model CRUST∗ J362D28 SAW24 S20A-Iso TX2002 S20RTS SB4 L18 Mean
rms 696 908 893 1002 860 972 849 873
correl – 0.75 0.76 0.80 0.78 0.78 0.79 0.87
var. red. – 25% 30% 22% 41% 24% 44% 47%

Note: ’rms’ = root-mean-square amplitude, expressed here in units of m

’correl’ = global cross-correlation, ’var. red.’ = variance reduction
† Data and predictions (shown in Fig. 17) are synthesized from spherical harmonics up to degree 20.
‡ Predictions employ the tomography model indicated at the top of each column and they use the corre-

sponding velocity-density scalings in Fig. 12.
∗ The global dynamic surface topography obtained by subtracting CRUST2.0 (Bassin et al. 2000) isostatic

crust from the observed topography.

seismic tomography models. In this regard it is useful to first evaluate the extent to which
the tomography-based topography predictions incorporate the age-dependent cooling of
the oceanic lithosphere. Tomography models employing seismic travel-time and/or sur-
face wave data place strong constraints on lithospheric mantle heterogeneity and they
contain a clear signature of the oceanic cooling history (e.g., Woodward & Masters 1991;
Su et al. 1992; Trampert & Woodhouse 1996; Ritzwoller et al. 2004).

Here we consider the global tomography models SAW24 (Mégnin & Romanowicz
2000) and TX2002 (Grand 2002), employed in Figs. 17c and 17e respectively. The age-
dependent lateral temperature variations in the oceanic lithosphere were calculated us-
ing a simple halfspace cooling model with the same thermal parameters as the GDH1
plate-cooling model of Stein & Stein (1992). The seafloor age was determined using the
Muller et al. (1997) digital isochrons. The global ocean basins were then sampled on a
1◦ × 1◦ grid and for each grid cell the corresponding values of ocean age, shear velocity
perturbation dVS/VS and temperature perturbation ∆T were determined. These samples
were then averaged into two million-year age bins and the resulting relationship between
seismic shear velocity and temperature is plotted in Fig. 19.
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Figure 19: Comparison of seismic shear velocity and temperature anomalies in the oceanic
lithosphere. Seismic shear velocity anomalies, vertically averaged in the depth interval 0-
100km, are derived from tomography models SAW24 (Mégnin & Romanowicz 2000) and
TX2002 (Grand 2002). The S-velocity anomalies, measured relative to the global oceanic
mean value, were averaged into 2-Ma age bins using the global ocean-age compilation of
Muller et al. (1997). The age-dependent temperature variations in the oceanic lithosphere
were determined using a simple halfspace cooling model with the same thermal parame-
ters as the GDH1 plate model of Stein & Stein (1992). These temperature variations were
vertically averaged down to 100 km depth and subsequently averaged into 2-Ma age bins.
The temperature anomalies are measured relative to the global oceanic mean value. The
vertical and horizontal error bars represent 1 standard deviation relative to the average
shear-velocity and temperature, respectively, in each age bin. The solid blue and red lines
are the best-fitting linear regression lines for models SAW24 and TX2002, respectively.

A linear regression analysis (solid lines in Fig. 19) yields an excellent fit to the binned
VS – T variation and the slopes of the regression lines provide estimates of the effective
temperature derivative of S-velocity in the depth range 0-100 km. These estimated deriva-
tives are 8.7 × 10−5 K−1 and 9.4 × 10−5 K−1 for models SAW24 and TX2002, respectively.
These effective thermal derivatives agree well with independent mineral physics values
determined by Stixrude & Lithgow-Bertelloni (2005) which range between 8 and 9 ×10−5

K−1. These results confirm that the global tomography models considered in this study
successfully resolve the pattern and amplitude of age-dependent cooling of the oceanic
lithosphere.

The relative importance of surface topography due to lithospheric versus sub-lithospheric
density anomalies is illustrated in Fig. 20. As expected, the topography contributions in
oceanic regions from density anomalies in the upper 200 km of the mantle are dominated
by the age-dependent cooling of the oceanic lithosphere. Depressions in continental re-
gions exceed observational estimates (Fig. 17a) because the use of a purely depth depen-
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dent dln ρ/dln VS scaling factor (Fig. 12) does not resolve the intrinsic chemical buoyancy
in the sub-continental mantle. This intrinsic buoyancy can be included in geodynamic
models which allow for lateral variations of dln ρ/dln VS in the shallow mantle (e.g., Forte
& Perry 2000; Deschamps et al. 2001).

The topography generated by sub-lithospheric buoyancy (Fig. 20b), with rms ampli-
tude equal to 410 metres, is comparable to that generated by lithospheric density anoma-
lies (Fig. 20a) which has an rms amplitude equal 580 metres. These sub-lithospheric
contributions to topography in the central Pacific and Atlantic oceans, and in southern
Africa, are surface expressions of deep-seated buoyancy with sources in the lower man-
tle (Fig. 3). The depressions below the eastern and western margins of the Pacific (Fig.
20b) may be interpreted in terms of present-day and Cenozoic subduction history (e.g.
Lithgow-Bertelloni & Gurnis 1997).
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Figure 20: Shallow- versus deep-mantle contributions to surface topography. (a) Surface
topography predicted on the basis of tomography-derived density anomalies in the up-
per 200 km of the mantle. (b) Surface topography predicted on the basis of all density
anomalies below 200 km depth. In both cases the density anomalies are derived from to-
mography model TX2002 (Grand 2002) and using the corresponding dln ρ/dln VS scaling
profiles in Fig. 12. The summation of the topography fields in maps (a) and (b) yields the
total field shown above in Fig. 17e. All fields are synthesized from spherical harmonics
up to degree and order 20.

We note from Fig. 17 that the amplitude of the predicted dynamic topography is some-
what larger than the crust-corrected estimate of the observed dynamic topography. Table
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3 shows that the rms amplitude of the mean topography prediction is 25% larger than
the observed topography. This discrepancy is in marked contrast to that of the predicted
gravity and plate divergence fields (Tables 1,2) which are, on average, 40-50 % smaller
than the corresponding observed fields. The mismatched amplitudes of the predicted
surface topography has motivated previous efforts (e.g., Le Stunff & Ricard 1995, 1997)
to introduce additional buoyancy forces in the mantle arising, for example, from undula-
tions of the 670 km seismic discontinuity (e.g., Thoraval et al. 1995; Forte & Woodward
1997b) which internally compensate the excess surface topography.

In assessing the significance of this discrepancy, in terms of mantle dynamics, it is
important to recognise that the crustal correction employed in Fig. 17a contains signif-
icant uncertainties which may in part be responsible for the mismatched amplitudes.
Perhaps more important is the question of the validity of a purely depth-dependent
velocity-density scaling (Fig. 12) employed in the topography predictions. Such depth-
dependence, which may be justified if one assumes that thermal effects on mantle hetero-
geneity dominate (e.g., Karato & Karki 2001), is not a good approximation in the presence
of large lateral variations in chemical composition. Such compositional heterogeneity is
expected to be important in the shallow subcontinental mantle and it will oppose the
local thermal buoyancy, implying significant reductions in the amplitude of continental
surface topography (e.g. Forte & Perry 2000).

To understand why the gravity (and plate motion) predictions, in contrast to the sur-
face topography, have substantially smaller amplitudes than the observed fields, we must
first appreciate that the global seismic data have difficulty resolving heterogeneity in the
deep mantle, particularly in the southern hemisphere (e.g., Forte et al. 1994; Simmons
et al. 2006). This difficulty does not apply to the shallow mantle where, as shown above
(Fig. 19), the tomographymodels are able to successfully resolve the cooling oceanic litho-
sphere. The predicted surface topography is dominated by the density anomalies located
in the upper mantle, whereas the gravity predictions contain significant contributions
from lower-mantle density anomalies (Fig. 10). Joint inversions of global seismic and
convection-related data sets have shown that increased amplitudes of the predicted grav-
ity anomalies and substantially improved fits to the global gravity data can be achieved
by modifying deep-mantle heterogeneity in a way that is consistent with both the seismic
and geodynamic constraints (e.g., Forte et al. 1994; Simmons et al. 2006, 2007, 2009, 2010).
Such modifications to lower-mantle heterogeneity have little impact on the amplitude
of the predicted surface topography. These basic observations suggest that current mis-
matches between the amplitudes of the predicted and observed dynamic topography are
not more significant, or fundamentally different, from the mismatch between the other
predictions (i.e., gravity and plate motions) and their corresponding observables.

3.6 Predicted CMB topography

Tomography-based studies of the flow-induced deformations of the core-mantle bound-
ary (CMB) has been rather limited (e.g., Hager et al. 1985; Forte et al. 1993a, 1995) rel-
ative to the much greater number of studies which have focussed on the surface geoid
or topography. This is in large part a consequence of the uncertain and often contrasting
inferences of the CMB topography which have been derived from inversions of seismic
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phases which are sensitive to this topography (e.g., Morelli & Dziewonski 1987; Rodgers
&Wahr 1993, Obayashi & Fukao 1997; Boschi & Dziewonski 2000; Garcia & Souriau 2000;
Sze & van der Hilst 2003). A detailed discussion of the seismological uncertainties and
difficulties in obtaining reliable global images of the CMB topography may be found in
Garcia & Souriau (2000).

The most accurate constraint on the topographic undulations of the CMB are derived
from space-geodetic analyses of Earth’s nutations. A brief review of these constraints was
presented above in section 2.1. Unfortunately, these geodetic analyses can only constrain
the excess flattening or dynamic ellipticity of the CMB – albeit with high precision – and
this corresponds to only one coefficient (ℓ = 2, m = 0) in a full spherical harmonic ex-
pansion (expression 1) of the spatially varying CMB topography field. This constraint on
excess CMB flattening is included in all the Occam-inferred dln ρ/dln VS scaling profiles
in Fig. 12.

For the purpose of comparison we consider a relatively recent seismological inference
of the CMB topography (Fig. 21a) obtained by Boschi & Dziewonski (2000) (henceforth
referred to as ’BD2000’) on the basis of seismic PcP and PKP travel-time delays. The
flow-induced CMB topography predicted on the basis of the Occam-inferred dln ρ/dln VS

profiles (Fig. 12), and using the kernels in Fig. 10g,h, is presented in Fig. 21. All pre-
dictions of CMB topography shown here exactly reproduce the geodetically constrained
400m excess CMB ellipticity. A quantitative spectral analysis (Fig. 22) of the predicted
CMB topography fields shows that they are strongly dominated by the horizontal wave-
lengths corresponding to harmonic degrees ℓ = 2, 3. In Table 4 is presented a detailed
summary of the match between the predicted and observed CMB topography fields.

The overall spatial correlation between the predicted maps of flow induced CMB to-
pography and the BD2002 model (Fig. 21) is quite good, however it is quite clear that
there is a significant difference in the overall amplitude. The CMB topography obtained
on the basis of the tomography-based flow calculations is approximately a factor of 3 to
4 times smaller than that in BD2002. Although, as noted above (section 3.3), there likely
exists an inherent damping in the flow predictions, it is not possible to increase the ampli-
tude of the predicted CMB topography (by increasing, for example, the magnitude of the
dln ρ/dln VS scaling) without at the same time significantly degrading the fit to the other
geodynamic observables. The ±1.5 km scale undulations in the predicted, flow-induced
CMB topography are in the range estimated by Garcia & Souriau (2000) for horizontal
wavelengths in excess of 1200 km.
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Figure 21: Tomography-based global CMB topography. (a) Seismically inferred CMB to-
pography derived by Boschi & Dziewonski (2000). The amplitudes correspond to the top
values (±4.5 km) in the bottom scale bar. (b) – (g) show the CMB topography predicted
on the basis of tomography models J362D28 (Antolik et al. 2003), SAW24 (Mégnin & Ro-
manowicz 2000), S20A-Iso (Ekström & Dziewonski 1998), TX2002 (Grand 2002), S20RTS
(Ritsema et al. 1999), SB4 L18 (Masters et al. 2000), using the corresponding dln ρ/dln VS

scaling profiles in Fig. 12. All shear-velocity heterogeneity models have been projected
onto the common parametrisation in exptression (102) prior to calculating the CMB to-
pography. (h) The ’mean’ CMB topography field obtained by calculating the statistical
sample average of all the predictions (b) – (g). The amplitudes for (b) – (h) correspond to
the bottom values (±1.5 km) in the bottom scale bar. The observed and predicted CMB
topography shown here are all synthesized from spherical harmonics up to degree and
order 20. 64
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Figure 22: Spectral comparison of predicted and observed CMB topography. Top frame
shows the degree variance, as defined in equation (3), of the observed and predicted
CMB topography fields shown in Fig. 21. Bottom frame shows the degree correlations,
as defined in equation (4). The black solid and dashed lines represent the 95% and 99%
confidence levels, respectively.
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Table 4: Comparison of seismically observed† and predicted‡ CMB topography
Model BD2000∗ J362D28 SAW24 S20A-Iso TX2002 S20RTS SB4 L18 Mean
rms 2.3 0.58 0.42 0.76 0.53 0.61 0.51 0.55
correl – 0.56 0.56 0.64 0.59 0.65 0.55 0.62
var. red. – 22% 18% 31% 22% 27% 20% 24%

Note: ’rms’ = root-mean-square amplitude, expressed here in units of km

’correl’ = global cross-correlation, ’var. red.’ = variance reduction
† Seismic observations and predictions (shown in Fig. 21) are synthesized from spherical harmonics up to

degree 20.
‡ Predictions employ the tomography model indicated at the top of each column and they use the corre-

sponding velocity-density scalings in Fig. 12.
∗ CMB topography derived by Boschi & Dziewonski (2000) from global tomographic inversion of seismic

delay times.

4 Joint seismic-geodynamic inversions for 3-D structure and

flow in the mantle

In the preceding sections all interpretations of the 3-D structure and flow in the mantle,
and the predicted surface geodynamic observables associated with this flow, have been
entirely based on purely seismic inversions for 3-D lateral heterogeneity in the mantle.
This approach, in which previously published seismic tomography models are converted
a posteriori into an equivalent mapping of 3-D density anomalies, as described above in
section 3.2, is followed in essentially all analyses of tomography-based mantle convection
that have been published since the advent of the first global tomography models in the
mid 1980’s (e.g., Forte & Peltier 1987) up to the present (e.g., Conrad et al. 2011, Becker &
Faccenna 2011, Alisic et al. 2012).

In the following we will instead consider how the seismic constraints on global het-
erogeneity in the mantle may be simultaneously inverted with independent constraints
on 3-D structure from geodynamic and mineral physical data to obtain a new generation
of mantle tomography models that successfully reconcile all these constraints, thereby
providing new insights in the structure and dynamics of the mantle convective flow.

4.1 Deficiencies in mantle flow models based on pure seismic tomog-

raphy inversions

While the a posteriori scaling of mantle tomography models, derived purely from seismic
data, into equivalent density heterogeneity models has provided reasonably good fits
to the global convection-related data sets, there remain significant unexplained misfits to
these surface geodynamic constraints. More specifically, the variance reductions achieved
in fitting long-wavelength global plate motions, gravity and dynamic topography anoma-
lies are 55%, 41% and 47%, respectively. These misfits characterize the summary or ‘Mean’
predictions in the final column of Tables 1,2,3. These results, obtained with optimized
depth-dependent velocity-density scaling factors, suggest that, on average, about 50% of
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the power in convection-related data cannot be explained by the a posteriori scaling of the
currently available seismic tomography models.

In assessing the origin of the outstanding misfit between the tomography-based pre-
dictions of the convection-related observables and the corresponding data, a number of
possible deficiencies in the mantle-flow calculations should be considered. As discussed
above, in section 2.3.1, a major simplification in the mantle flow modelling is the as-
sumption that the sub-lithospheric viscosity of the mantle varies with depth only. We
should note, however, that these flow models incorporate the effect of what is arguably
the greatest-amplitude lateral heterogeneity of rheology in the solid-Earth: the tectonic
plates. All flow predictions presented in the preceding sections are carried out with sur-
face tectonic plates coupled to the mantle flow, and driven by this flow. The outstanding
question is therefore whether lateral viscosity variations (LVV) in the underlying mantle
can account for a significant fraction of the current misfit to the geodynamic data.

In addressing the impact of LVV on global convection-related surface data, Moucha
et al. [2007] found that global-scale heterogeneity in viscosity, in which the amplitude
of the LVV is equivalent to the variations in the mean depth-dependent viscosity (up to
3 orders of magnitude), yields predictions that differ by about 20% from those obtained
by neglecting LVV. These differences were also found to be substantially smaller than
the differences obtained using two different global tomography models. These results
suggest that LVV in the mantle are not likely to be the principal source of the outstand-
ing 50% misfit between the current tomography-based flow predictions and the surface
geodynamic observables.

Another, possibly major, source of misfit may be due to the neglect of lateral variations
in the scaling between seismic velocity and density, as would be the case in the presence of
significant compositional heterogeneity in the mantle. The predicted geodynamic observ-
ables presented above in section 3 are obtained using a purely depth-dependent scaling,
as expected if thermal contributions to mantle heterogeneity are assumed dominant (see,
for example, Fig. 12).

A detailed exploration of the amplitude and distribution of chemical heterogeneity
inferred on the basis of previously published tomography models, to achieve maximum
agreement with the surface geodynamic data, was carried out by Forte (2007). This anal-
ysis allowed for explicit lateral variations in the velocity-to-density scaling by inverting
for different scaling factors in regions of the mantle characterised by anomalously hot
material (e.g. rising plumes) and anomalously cold material (e.g. subducting lithosphere
in the lower mantle, and deep subcontinental roots in the upper mantle). This parama-
terisation of chemical heterogeneity is analogous to that advocated by Xu et al. (2008), in
which the composition of the mantle is assumed to be a mechanical mixture of basalt and
harzburgite generated by a long-term history of partial melting at mid-ocean ridges and
subsequent transport into the deep mantle by subducting lithosphere. The inversions by
Forte (2007) for a laterally variable scaling, associated with ’hot’ and ’cold’ regions of the
mantle, yielded an improved fit to the surface convection-related data sets, but the im-
provement of about 10% is largely insufficient to account for the outstanding 50% misfit
to these data.

We refer the interested reader to Forte (2007) for a detailed discussion of the geody-
namic and mineral physical interpretation of global tomography models, derived solely
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from seismic data, in terms of compositional heterogeneity in the mantle. An alterna-
tive view of compositional heterogneity in the mantle, based on ’probabilistic’ (purely
seismic) inversions for 3-D mantle structure is presented in Mosca et al. (2012).

4.2 Mantle flow modelling based on tomography models derived from

seismic data alone is insufficient

The considerations presented in the previous section suggest that the origin of the out-
standing (nearly 50%)misfit between the tomography-based predictions of the convection-
related observables and corresponding data is not likely to be resolved by the introduction
of additional complexity in the mantle flow theory, such as lateral viscosity variations or
lateral heterogeneity in major element mantle composition.

The main reason for the substantial misfit of the tomography-based geodynamic pre-
dictions is most likely due to a basic limitation inherent in published tomography models
derived solely from global seismic data. This limitation arises because the data sets em-
ployed in the derivation of these tomography models do not provide unique constraints
on lateral heterogeneity throughout the mantle. It has long been understood that the
amplitude of seismically inferred heterogeneity is poorly constrained over a large depth
interval in the mid and lower mantle and that direct comparisons between different mod-
els published in the literature yield ambiguous information (e.g. Masters et al. 2000, de
Wit et al. 2012). This ambiguity or non-uniqueness is the direct consequence of the exis-
tence of a large null space in the seismic data constraints on lateral heterogeneity in the
mantle (e.g. de Wit et al. 2012).

The relatively weak global seismic constraints in themid-mantle regionwere explicitly
shown in Forte et al. (1994) where it was also demonstrated that the seismic sampling of
heterogeneity in the southern hemisphere portion of the deepmantle was weak. This lim-
ited sampling of mantle heterogeneity in the southern hemisphere is especially marked
in tomography models derived predominantly from direct arriving seismic waves (e.g.
Li et al. 2008). A clear illustration of the outstanding difficulty in resolving mantle het-
erogeneity in the depth interval 600 to 2000 km is provided by the comparison of recently
published tomography models presented by Ritsema et al. (2011; see Figs. 1 & 11 in their
paper).

The mid-mantle region is of great importance in geodynamic modeling because the
mantle flow excited by buoyancy forces in this region explains a significant fraction of the
convection-related surface data such as the long wavelength free-air gravity anomalies
(see Fig. 10c,d) and the tectonic plate motions (see Fig. 10b). An accurate resolution
of mid-mantle buoyancy forces, over a large depth interval (from about 400 to 2000 km
depth), is also crucial for understanding the amplitude and spatial pattern of flow across
the entire mantle, with direct implications for the extent to which the flow is vertically
stratified (e.g. Forte & Woodward 1997a,b, Forte 2000, Simmons et al. 2006).

Currently published seismic tomography models do not represent the full range of
models that are compatible with the global seismic data sets (e.g. de Wit et al. 2012). Al-
though the tomographic inversions may contain far more data than the parameters used
to represent the 3-D models (e.g. Boschi & Dziewonski 2000, Li et al. 2008, Kustowski et
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al. 2008, Ritsema et al. 2011), the data nonetheless provide limited and non-uniform sam-
pling of deepmantle heterogeneity. This limitation arises in large part from the geograph-
ically restricted distribution of seismic stations and earthquake sources. Smoothness and
amplitude-damping constraints are therefore used to regularize the tomographic inver-
sions in order to stabilize the heterogeneity in those portions of the mantle that are poorly
sampled by the seismic data. If these regularization conditions are changed, then so are
the tomography models that result from the inversions. Furthermore, the result of any
seismic inversion will be dependent on a number of other factors that include: model pa-
rameterization, data weighting, seismic wave theory employed in the data interpretation.
Changes in any one of these ingredients will result in different 3-D seismic models that
will yield different and, in some cases, conflicting geodynamic interpretations of mantle
heterogeneity.

Since any individual seismic tomography model is only a single realization out of the
infinitely large space of models that are compatible with the global seismic data, it is not
sufficient to test mantle-flow hypotheses, or to evaluate the significance of predicted geo-
dynamic surface observables, on the basis of the published tomography models. As ini-
tially shown by Forte et al. (1994) and subsequently by Simmons et al. (2006, 2007, 2009,
2010), a robust test of different mantle-flow scenarios, and the degree to which mantle
heterogeneity is controlled by lateral temperature variations, is to check the plausibility
of these scenarios directly against the widest range of available seismic and geodyamic
data. This testing can be effectively accomplished by simultaneously inverting all data
constraints in a single large-scale inversion. These joint inversions will immediately re-
veal the extent to which these different constraints on mantle structure, composition, and
flow, can be simultaneously and successfully reconciled by at least one model of 3-Dman-
tle heterogeneity.

4.3 Simultaneous inversions of seismic, geodynamic andmineral phys-

ical data

In essence, a joint tomographic inversion of multiple and distinct classes of geophysical
data involves the search for (a) 3-D mantle heterogeneity model(s) that can simultane-
ously satisfy all these data. This was the approach developed by Forte et al. (1994) and
Forte & Woodward (1997), who implemented a method for jointly inverting global seis-
mic and geodynamic data. The key feature of these joint inversions, that sets them apart
from classical tomography inversions of seismic data alone, is the inclusion of constraints
directly relating to buoyancy-induced mantle flow, in particular the relationship between
this flow and convection-related surface data. These joint inversions are thus able to di-
rectly test to what extent the seismic constraints on mantle heterogeneity are compatible
with entirely independent geodynamic constraints on the same structure (e.g. Simmons
et al. 2006). This joint inversion procedure also allows a direct test of the degree to which
mantle heterogeneity is controlled by the thermal anomalies maintained by the mantle
convection process (e.g. Forte & Woodward 1997, Simmons et al. 2009)

69



4.3.1 Geodynamic and seismic data sets

The principal geodynamic surface observables that can be used to effectively constrain
the 3-D structure and dynamics of the convecting mantle were described previously in
section 2.1 and they include the global free-air gravity anomalies, the crust-corrected dy-
namic topography, the present-day tectonic plate velocities, and the excess ’flattening’ or
ellipticity of the CMB (all fields are shown above, in Fig. 2).

The theoretical, linear-integral relationship between the spherical harmonic coeffi-
cients of any one of these observable geodynamic fields and the corresponding harmonic
coefficients of the internal density perturbations in the mantle is provided by geodynamic
kernel or ’response’ functions, as shown above in equation (104). In the recent series of
joint seismic-geodynamic tomography inversions carried out by Simmons et al. (2007,
2009, 2010), the geodynamic response functions have been calculated on the basis of the
radial viscosity profile, shown in Fig. 9, derived from the simultaneous inversions of
GIA and convection data by Mitrovica & Forte (2004). The depth-dependent geodynamic
kernel functions that are derived on the basis of this geodynamically inferred viscosity
profile are presented in Fig. 10. These kernels will be employed in the joint tomography
inversions described below.

The seismic data employed in the joint seismic-geodynamic tomography inversions
consist of over 46,000 travel times of shear body waves (S waves) that were measured by
Simmons (2007) and Grand (2002) through cross-correlation of synthetic waveforms (for
1-D reference Earth model) and observed waveforms. These travel-time measurements
were made mainly on teleseismic, horizontally-polarized (SH) shear waves, including re-
flected multiple phases: Sn and ScSn, where n is the number of surface reflections and
c denotes a reflection from the CMB. The data set also contains vertically-polarized (SV)
teleseismic shear phases: SKS and SKKS. An additional, critically important compo-
nent of the global data set consists of regional, shallow-turning SH phases and surface-
reflected multiples that are triplicated due to sharp velocity increases in the upper-mantle
transition zone (Grand 1994). These shallow phases provide increased lateral resolution
of strongly-varying upper-mantle structures that teleseismic body waves do not provide.
A thorough discussion of the seismic data measurement and modelling procedure is pro-
vided by Simmons (2007), with a detailed summary to be found in Simmons et al. (2006).

4.3.2 Joint inversion procedure

The joint inversion of the seismic and geodynamic data sets described in the preceding
section is carried out by first parameterising the heterogeneity in the mantle in terms of
individual blocks, in each of which the heterogeneity is assumed to be constant. This
block representation of 3-D mantle structure is accomplished by dividing the mantle into
22 layers, from the surface down to the CMB, where the layer thickness varies between
75 km (in the upper mantle) to 150 km (in the lower mantle). The lowermost mantle
layer (layer 22), representing the heterogeneity in the seismic D” region, has a thickness
of 240 km. Each layer is then divided into rectangular voxels whose sides have a horizon-
tal dimension of 275 km. This parameterisation of mantle structure yields nearly 99,000
blocks.
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The suite of convection-related geodynamic observables (Fig. 2) are combined with
the global seismic data into a single linear system, yielding an inverse problem that si-
multaneously constrains seismic velocity and density heterogeneity as follows:
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(109)

in which the heterogeneity in the mantle, denoted here by the column vector m with
∼99,000 components, is expressed in terms of seismic slowness perturbations. The seis-
mic constraints on mantle heterogeneity are incorporated via L, a sparse matrix of ray
path lengths (seismic sensitivities), and r, the shear wave travel-time residuals. L has a
row dimension of∼46,000, corresponding to the total number of seismic travel times. The
geodynamic constraints are incorporated through G, a fully populated matrix containing
the viscous flow sensitivity kernels (Fig. 10), where each row corresponds to a specific
spherical harmonic component of the free-air gravity, plate divergence and dynamic to-
pography constraints. Since each of these fields is expressed by truncated spherical har-
monic expansions up to a maximum harmonic degree ℓ = 16, there are a total of 861 rows
inG. Each component of the column vector s contains the spherical harmonic coefficients
of the geodynamic observables (Figs. 2a–c) normalized by their estimated standard error.
The row vector c is the viscous flow response function (i.e. kernel) for the ℓ = 2 zonal
harmonic coefficient describing the excess ellipticity of the CMB (Fig. 2d), contained in
the data component e.

The inversion is stabilized through the introduction of a regularization or smoothing
operator represented by the matrix R, designed to yield a second-order smoothing in
both the vertical (layers) and horizontal (blocks) directions (Simmons 2007). The λ terms
in equation (109) are scalar quantities that determine the relative weights applied to the
seismic, geodynamic and smoothing constraints.

Since the geodynamic data are strictly related to density perturbations rather than the
seismic heterogeneity (see section 3.2), we must also incorporate a relationship between
perturbations of density (ρ) and shear wave velocity (VS). In equation (109), the density-
velocity relationship is identified by Rρ/s which is defined by:

Rρ/s =
dlnρ

dlnVS
(110)

The selection of appropriate density-velocity scaling is clearly important in ensuring that
the independent constraints on mantle heterogeneity provided by the seismic and geody-
namic data can be fully reconciled. This reconciliation also bears on the extent to which
this heterogeneity is dominated, or not, by the thermal structure maintained by the con-
vecting mantle. These considerations are discussed in the next section.

Finally, the joint linear system in (109) is inverted using an iterative LSQR inversion
technique (Paige & Saunders 1982). Special attention is required to ensure successful con-
vergence of the iterations, owing to the mixed (i.e. sparse and fully populated) character
of the joint matrix on the left-hand side of expression (109). A modified LSQR scheme
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was therefore implemented by Simmons (2007). This modified scheme also permits an
independent specification of the density-velocity scaling in (110), such that it is fully
decoupled from the geodynamic kernels in expression (105). In a further modification
introduced by Simmons et al. (2010), the LSQR iterations are embedded in a very fast
simulated annealing process that ensures maximum consistency between the seismic and
geodynamic constraints on 3-D mantle structure.

4.4 Relating mantle density and seismic velocity anomalies

The principal hypothesis employed in previous joint inversions of global seismic and geo-
dynamic data sets (Forte et al. 1994, Forte & Woodward 1997b, Simmons et al. 2007, 2009,
2010) is that the lateral temperature variations maintained by the process of thermal con-
vection are the dominant source of lateral heterogeneity in the mantle. The most notable
and generally accepted exception to this thermal dominance is the heterogeneity asso-
ciated with the so-called ‘tectosphere’ (e.g. Jordan 1981), namely the deep lithospheric
roots below ancient continental shields, wherein geodynamic data consistently show that
significant compositional heterogeneity occurs and that it almost completely offsets the
negative buoyancy of thermally-generated density anomalies (e.g. Forte & Perry 2000).

The other, more speculative exception concerns the possible dominance of large-scale
thermo-chemical ‘piles’ at the very bottom of the mantle (e.g. McNamara & Zhong 2005),
that could be interpreted as the consequence of long-term accumulation of subducted
MORB-derived heterogeneity in the seismic D” layer (e.g. Nakagawa & Tackley 2008).
The dominant signature of these chemical piles is less generally accepted because mantle
convection modelling has shown that most of the seismic (shear-velocity) heterogene-
ity in the lower mantle can be explained quantitatively in terms of lateral temperature
variations (e.g. Quéré & Forte 2006, Schuberth et al. 2009). The possibility that lateral
temperature variations maintained by the convecting mantle are the dominant source
of 3-D mantle heterogeneity is further supported by recent seismic modelling of mantle
structure generated by theoretical convection models (Schuberth et al. 2012).

Whether or not compositional heterogeneity is a dominant contributor to 3-D seis-
mically inferred structure in the lithospheric mantle below continents, or in the seismic
D” layer, the main driving force for the convective flow is due to buoyancy forces in the
bulk of the mantle that are generated by hot thermal plumes and cold subducting litho-
sphere. This fundamental fluid-mechanical property of thermal convection, in which the
global circulation is mainly driven by the buoyancy associated with thermal anomalies
in the interior of the convecting layer (i.e. outside the thermal boundary layers at the top
and bottom of the layer), has been understood and established long ago (e.g. Turcotte &
Oxburgh 1967, Jarvis & Peltier 1982). It is therefore clear that constraining the amplitude
and spatial distribution of thermal anomalies in the bulk of the mantle holds the key to
understanding the dynamics of the convecting mantle.

In view of the preceding considerations, the natural starting assumption to employ in
the simultaneous tomographic inversion of global seismic and geodynamic data sets is an
a-priori relationship between seismic shear-velocity and density anomalies, Rρ/s, defined
in eq. (110) that is expressed in terms of lateral temperature variations and is accordingly
quantified in terms of mineral physics data. In the recent series of inversions carried out
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by Simmons et al. (2007,2009,2010), the iterative determination of lateral heterogeneity in
the mantle that simultaneously explains seismic and geodynamic data was commenced
with a depth-dependent Rρ/s based on the mineral physical results of Cammarano et al.
(2003) for the upper mantle, and Karato & Karki (2001) for the lower mantle. The optimal
1-D Rρ/s profile that was determined on the basis of these mineral physics studies is rep-
resented by the red curve in Fig. 23 (explicit values are provided in Table 3 in Simmons et
al. 2009).

The joint tomography model derived on the basis of this 1-D density-velocity scaling
(red curve in Fig. 23) provides an excellent match to the global seismic data (93% variance
reduction) that is essentially identical to a pure seismic model obtained in an inversion
without geodynamic constraints (Simmons et al. 2009). The joint tomography model also
yields a reasonably good match to the global geodynamic constraints: variance reduc-
tions of 71%, 96%, and -9% to the free-air gravity anomalies, plate motions (expressed in
terms of their horizontal divergence), and crust-corrected dynamic topography, respec-
tively. Although the fits to the gravity anomalies and plate motions are now a great im-
provement over those obtained with pure seismic tomography models (see Tables 1, 2), it
is also clear that a purely thermal interpretation of mantle heterogeneity is not compatible
with the dynamic topography data. The principal source of topography misfit in conti-
nental regions is the neglect of compositional heterogeneity under ancient cratons, as dis-
cussed above, and the non-linear thermal effects associated with temperature-dependent
seismic attenuation and partial melting in the shallow mantle, under oceanic (especially
mid-ocean ridges) and tectonically-active regions (Simmons et al. 2009).

To account for the impact of this upper-mantle compositional heterogeneity under
cratons and for non-linear thermal effects, Simmons et al. (2009, 2010) introduced an
effectively 1.5-D or ‘corrected’ Rρ/s scaling relationship, defined as follows:

Rcorrected
ρ/s = R1−D

ρ/s + κ δlnVS, where κ =

(

∂Rρ/s

∂ lnVS

)

(111)

The partial derivative κ adjusts or corrects the density-velocity scaling Rρ/s according to
the seismic heterogeneity model, δlnVS , obtained in the preceding joint inversion assum-
ing the radially-symmetric R1−D

ρ/s model (red curve in Fig. 23).

Simmons et al. (2009) conducted a search for optimal values of κ in expression (111) by
first identifying three distinct regions in the upper mantle: (1) cratonic lithospheric roots,
from 25 to 250 km depth, (2) non-cratonic shallow mantle, from 25 to 250 kim depth, and
(3) deep upper mantle, from 250 to 650 km. The values of κ in regions (2) and (3) model
the impact of non-linear, purely thermal effects in the upper mantle. The value of κ in
region (1) models the impact of the compositional heterogeneity in the cratonic upper-
mantle associated with the continental tectosphere. Simmons et al. (2010) further refined
this regionalization of the shallow mantle by searching for separate κ values in the depth
intervals 25–100 and 100–250 km.

The κ values in eq. (111) that provide an optimal reconciliation of the joint seismic
and geodynamic (especially dynamic topography) constraints on mantle heterogeneity
are summarized in Table 3 in Simmons et al. (2009) and in Table 4 in Simmons et al. (2010).
On the basis of this effectively 1.5-D parameterisation of Rρ/s, the variance reductions to
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the geodynamic data reported by Simmons et al. (2009) are 75% for free-air gravity, 98%
for horizontal plate divergence, and 41% for dynamic topography. In the joint inversions
of Simmons et al. (2010) the variance reductions for 1.5-D Rρ/s are 73% for free-air gravity,
97% for horizontal plate divergence, and 32% for dynamic topography. The fit (variance
reduction) to the global seismic shear-velocity data is 93% for Simmons et al. (2009) and
90% for Simmons et al. (2010), where the latter inversion is also constrained to satisfy
global P-wave travel-time residuals.

These upper-mantle corrections to the purely 1-D, thermal Rρ/s scaling profile, in par-
ticular under continental cratons, yield a substantially improved fit to the dynamic to-
pography but it is still clear that this geodynamic observable is not reproduced as well as
the gravity or plate motion data. One possible explanation for this deficiency is that the
1.5-D corrections, as modelled in expression (111), do not accurately reproduce a number
of mineral physical effects, that include (1) additional compositional heterogeneity in the
cratonic roots not explained in terms of the simplified velocity-based correction; (2) com-
positional heterogeneity elsewhere in the mantle; (3) partial melting and strongly non-
linear (e.g. seismic-Q dependent) effects that cannot be simply explained by the velocity-
based correction.

The more complex, compositional or non-thermal effects not accounted for in the cor-
rected 1.5-D density-velocity scaling in expression (111) can be determined by solving for
a fully 3-D R3−D

ρ/s scaling relationship between seismic shear velocity and density anoma-

lies. The determination of this completely general density-velocity scaling relationship is
an intrinsically nonlinear problem that is based on the linear system in eq. (109) that de-
fines the joint tomography model, and it yields R3−D

ρ/s by iteratively solving the following

linear system:
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where mk is the seismic slowness model obtained by joint inversion of system (109) as-

suming a density-velocity scaling R3−D,k
ρ/s obtained in a previous cycle of the iterative pro-

cess. System (112) is solved via an LSQR inversion, as the original system (109), except

that the unknowns are the block representation of the density-velocity scaling R
3−D ,k+1

ρ/s ,

for a fixed or given seismic heterogeneity model. At the very outset, for k = 0, the itera-
tions are initiated with the corrected 1.5-D scaling defined above in expression (111). The

next iterative update of the density-velocity scaling, R3−D,k+1
ρ/s is then found by inverting

expression (112) and the cycles continue until convergence.
In Simmons et al. (2009) only the first k = 0 cycle was solved in eq.(109), where the

final seismic-shear heterogeneity model was determined on the basis of the 1.5-D cor-
rected density-velocity scaling (111), and the final 3-D scaling was found by solving eq.
(112) once. Figure 23a provides a graphical summary of the lateral variability of the 3-
D density-velocity scaling R3−D

ρ/s relative to the 1-D thermally derived scaling. The large

scatter in the top 300 km of the mantle, extending to negative values, represents strong
compositional contributions in the sub-cratonic mantle under ancient continental shields.
In the upper-mantle transition zone the modes of the histograms representing the lateral
variability are displaced relative to the 1-D thermal profile, suggesting that some revision
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to the depth-dependent mineral physical estimates may be warranted. This may be due
to compositional or mineralogical (phase-change dependent) complexity that is not mod-
elled with the thermally-derived background scaling. In the lower mantle, below 2000
km depth, there is also similar evidence of displaced modal values relative to the thermal
scaling. Nonetheless, the outstanding characteristic of the laterally variable R3−D

ρ/s in the

lower mantle is the close grouping of the scaling values around the a-priorimineral phys-
ical estimates and this demonstrates that a dominantly thermal origin for heterogeneity
in the mantle is fully compatible with the combined seismic and geodynamic constraints
on the 3-D mantle structure.

Simmons et al. (2010) iteratively inverted the combined system of equations (109) and
(112) through about 60 cycles to achieve convergence. In each cycle the initial, thermally
based 1-D scaling relationship (red curve in Fig. 23a) and the non-linear thermal effects,
as modelled by eq. (111), were also corrected and revised. The final, optimal 1-D scal-
ing is shown by the red curve in Fig. 24a and the distribution of laterally variable 3-D
scaling at each depth in the model, inferred by solving system (112), is represented by
the shaded histograms. In the upper 300 km of the mantle we again note the strongly
elongated distribution, extending to negative values, that is needed to characterize the
sub-continental mantle under cratons and strongly nonlinear effects (e.g. partial melt-
ing) under oceans. In the deeper mantle, the modes of the 3-D scaling distribution are all
centred on the background 1-D scaling values (red curve) that has been adjusted relative
to the initial thermally-derived 1-D scaling. In the bottom 500 km of the lower mantle
the scaling distribution extends to zero values and these characterize the compositional,
intrinsically dense interiors of the ‘superplume’ structures under the African and Pacific
plates (see next section).
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Figure 23: Implications of joint seismic-geodynamic-mineral physical constraints for ther-
mal and non-thermal contributions to mantle heterogeneity. (a) The red curve repre-
sents the optimal 1-D density-velocity scaling Rρ/s derived from mineral physical data
assuming that thermal contributions to heterogeneity are dominant (see text for details).
The shaded histograms at each depth represent the normalized distribution of the 3-D
density-velocity scaling R3D

ρ/s derived from the joint seismic-geodynamic inversions (Sim-
mons et al. 2009). (b) The red curve represents the thermal contributions to mantle het-
erogeneity when a seismic tomography model, TX2008s derived by Simmons et al. 2009
from seismic data alone, is scaled to density using the 1-D thermal Rρ/s profile shown in
(a). The subsequent inversion for a 3-D density-velocity scaling R3D

ρ/s that provides a fit to
the geodynamic data yields the compositional (non-thermal) contributions to mantle den-
sity shown by the blue dashed curve. (c) When the seismic and geodynamic constraints
are simultaneously inverted, in an iterative inversion that is initiated with the thermal
Rρ/s profile shown by the red curve in panel (a), the thermal and compositional contribu-
tions to mantle heterogeneity in tomography model TX2008 (Simmons et al. 2009.) are
shown by the red and blue dashed curves, respectively. (Figures adapted and modified
from Simmons et al. 2009.)

76



500

0

1000

1500

2000

2500

3000
−0.1 0.0 0.1 0.2 0.3

ρ/R S RMS Density (%)

RMS Vs (%)

(a) (b)

(c)D
ep

th
 (

km
)

Figure 24: Importance of thermal and compositional heterogeneity from multiparameter
joint seismic-geodynamic-mineral physical inversions for V s, V p, and ρ anomalies in the
mantle. (a) The red curve represents the 1-D density-velocity scaling Rρ/s derived from
an iterative, simulated annealing optimization that was initiated with the purely thermal
scaling profile based on mineral physics data (red curve in Fig. 23a). The grey, filled
regions represent the normalized distribution of the 3-D density-velocity scaling R3D

ρ/s de-
rived from the joint seismic-geodynamic inversions (Simmons et al. 2010). (b) The green
curve represents the total (rms) amplitude of mantle V s anomalies in seismic tomography
model GyPSuM derived from joint inversion of seismic, geodynamic and mineral physi-
cal data (Simmons et al. 2010). The red and blue curves represent the thermal and compo-
sitional (non-thermal) contributions, respectively. (c) As in panel ( b), except that mantle
density anomalies in model GyPSuM are represented. (Figures adapted and modified
from Simmons et al. 2010.)
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4.5 Joint seismic-geodynamic mapping of density anomalies

The joint seismic-geodynamic tomography inversion for mantle density anomalies is ac-
complished by solving expression (109), which is characterized by a nonlinear coupling
of the seismic shear-velocity heterogeneity δlnVS and the density-velocity scaling Rρ/s. As
discussed in the preceding section, the solution is obtained through the iterative inversion
of the coupled system of linear equations (109) and (112). The final iteration of this cou-
pled system yields a mapping of the total density perturbation field δlnρtotal that includes
both thermal and non-thermal, compositional effects:

δlnρtotal = R3−D
ρ/s δlnV final

S (113)

in which R3−D
ρ/s and δlnV final

S are the final 3-D density-velocity scaling and seismic-shear

heterogeneity, respectively, derived from the iterative inversion process.
The purely thermal contributions to the mantle density anomalies can be estimated

using the following expression:

δlnρthermal = Rthermal
ρ/s δlnV final

S (114)

in which the thermal density-velocity scalingRthermal
ρ/s is obtained from expression (111), in

which the 1-D profile R1−D
ρ/s is derived from mineral physical data for thermal effects and

the parameterisation of the non-linear thermal effects in the uppermantle is accounted for
by the κ term. In the latter case we exclude the use of κ values estimated for the cratonic
upper mantle, since these model compositional effects. Explicit values for these thermal
terms may be found in Tables 3 and 4 of Simmons et al. (2009) and Simmons et al. (2010),
respectively.

Finally, the compositional or non-thermal contributions to the mantle density anoma-
lies may be simply estimated by subtracting expressions (113) and (114):

δlnρnon−thermal = δlnρtotal − δlnρthermal (115)

This definition of non-thermal contributions can also include effects not directly mod-
elled by the assumed thermal scaling in (111), such as possible higher-order non-linear
behaviour due to Q-dependence of seismic shear velocity or partial melting.

Current efforts to constrain the magnitude of compositional contributions to mantle
density perturbations, in particular the hypothesized lower-mantle chemical ‘piles’, are
important to understanding the thermal and chemical evolution of the convecting mantle
(e.g. Nackagawa et al. 2010, Davies et al. 2012). These analyses must contend with the
likelihood of bias introduced by a-posteriori conversion of published tomography models,
derived from seismic data alone, into equivalent maps of density anomalies. The possibil-
ity of this bias was demonstrated in an experiment conducted by Simmons et al. (2009), in
which they determined a 3-D density-velocity scaling by inverting system (112), in which
the seismic heterogeneity model m is independently derived from a classical inversion
involving seismic data alone. The amplitude of the thermal and compositional density
anomalies, calculated according to expressions (114) and (115), are shown in Fig. ??b
where we note this a-posteriori analysis of a pure seismic heterogeneity model yields the
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inference of strong compositional heterogeneity in the lower mantle. In contrast, when
the density and seismic shear-velocity anomalies are simultaneously determined in a joint
inversion that is initially constrained by mineral physical data (red curve in Fig. 23a), the
inferred amplitude of compositional heterogeneity in the lower mantle is much weaker
(Fig. 23c).

The most recent effort at constraining the thermal and compositional heterogeneity
in the mantle, via simultaneous inversion of seismic, geodynamic and mineral physics
data was carried out by Simmons et al. (2010). In contrast to the previous joint inver-
sions by Simmons et al. (2007, 2009), the seismic shear-velocity data were augmented to
include a very large set of global P-wave travel times. The joint inversions were there-
fore designed to simultaneously map lateral variations in ρ, VS and VP throughout the
mantle. The relative amplitudes of thermal and compositional contributions to the seis-
mic shear-velocity heterogeneity, where the former is determined in an inversion based
on the thermally dependent version of the 1.5-D scaling in eq. (111), are summarized in
Fig. (Fig. 24b). A substantially different illustration of the relative importance of thermal
and compositional contributions is provided by the amplitudes of the density anomalies
shown in (Fig. refdens-veloc-2010c), where we observe that non-thermal and thermal
contributions (obtained via eqs. 114 & 115) are of similar magnitude in the top 250 and
bottom 500 km of the mantle. This constrasts with the clear dominance of thermal effects
at all depths in the case of the seismic shear-velocity heterogeneity. The latter result lends
further support to the conclusion reached by Forte & Mitrovica (2001) that seismic shear-
velocity anomalies, in particular in the deep lower mantle, provide a reliable mapping of
the lateral temperature variations maintained by the mantle convective circulation.

The field of total density anomalies in the mantle as defined by expression (113) and
obtained in the joint inversions by Simmons et al. (2009) is referred to as model TX2008.
The corresponding model of total density anomalies obtained in the joint inversions by
Simmons et al. (2010) is referred to as model GyPSuM . Model TX2007 is an earlier
density heterogeneity model, essentially a precursor to TX2008 but with weaker smooth-
ing constraints, that was obtained by Simmons et al. (2007). Maps of all three models
at selected depths in the upper and lower mantle are provided in Fig. 25 and Fig. 26,
respectively.

The amplitudes of the upper-mantle density anomalies (Fig. 25) generally do not ex-
ceed a value of about 0.5%. For example, under the western Pacific subduction zone, in
the transition zone (depth interval 525-650 km), the maximum amplitude of the positive
density anomalies that correspond to subducted slabs is +0.5%. We can understand the
plausibility of this value by considering an idealized descending lithospheric slab with
average temperature contrast relative to adiabatic mantle of about 700◦ and having an
average width of about 100 km. If we further assume that this signal is ‘smoothed’ over
a horizontal distance of 275 km, corresponding to the lateral dimension of a single block
in the tomography model, then we predict a relative density perturbation +0.5% for this
block, assuming a thermal expansion coefficient of 2× 10−5 K−1.

These density anomalies in the upper-mantle transition zone provide important driv-
ing forces for the mantle-wide convective flow, especially for surface plate motions (see
the divergence kernels in Fig. 10b). Notice, however, that there are other important
sources of upper-mantle buoyancy that are not related to subducted slab heterogeneity,
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in particular the plume-related anomalies under the Eastern Pacific oceanic ridge system
that will also provide a strong contribution to the mantle convective flow and the associ-
ated surface plate motions.

The maps of lower-mantle density anomalies (Fig. 26) reveal long-wavelength struc-
tures that have been long resolved in numerous purely seismic tomography models (e.g.
Dziewonki 1984, Grand 2002, Romanowicz 2003). The most noteworthy features in these
density maps are the elongated structures of positive buoyancy located deep under the
Eastern Pacific oceanic ridge system, as found in the upper mantle (Fig. 25), especially
under the East Pacific Rise. The implications of this buoyancy will become evident in the
discussion of mantle flow presented in the next section. We also note, especially in the
GyPSuM model, the occurrence of compositionally dense material in the core of the hot
superplume structures under the central Pacific Ocean and under Southern Africa. The
effect of this negative, compositional buoyancy in the central Pacific is to further enhance
the importance of the flow driven by the buoyant hot material associated with plumes
under the Eastern and Southwestern Pacific Ocean.

Table 5: Global data fits by joint seismic-geodynamic tomography models
Tomography Data Fitsa

Model Seismic Gravityb Divergenceb Topographyb CMBb

(%) (%) (%) (%) (metres)
TX2007 95 89 (69) 94 (92) 73 (62) 400
TX2008 93 91 (68) 99 (99) 80 (66) 400

GyPSuM 93 88 (65) 99 (99) 72 (60) 400
a With the exception of the excess CMB ellipticity (last column), all data fits are expressed

as percent (%) variance reductions.
b The geodynamic data include the global free-air gravity anomalies, horizontal

divergence of present-day plate motions, the crust-corrected dynamic topography and the

excess CMB ellipticity (‘observed’ value = 400 m), all shown in Fig. 2. With the exception

of the CMB, the fits cited are for flow predictions and geodynamic observables truncated

at spherical harmonic degree ℓ = 16. The values in parentheses () are fits for predictions

and observables truncated at spherical harmonic degree ℓ = 32. In all cases the

geodynamic predictions are obtained on the basis of a flow calculation using the ‘V1’

viscosity profile in Fig. 9.

The excellent fits to the combined seismic and geodynamic data sets provided by the
three joint tomography models is summarized in Table 5. Even a cursory comparison
of these fits with those obtained on the basis of previously published, purely seismic
tomography models (see Tables 1–4), reveals the power of the joint inversion method
in achieving a very satisfactory reconciliation of the independent constraints on mantle
heterogeneity provided by the global seismic and geodynamic data sets. It is of course
important to underline that this reconciliation is accomplished in the context of a domi-
nantly thermal origin for the lateral heterogeneity in the mantle.
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TX2007, 1450 − 1600 km
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4.6 Implications for global mantle flow

In developing a successful or ‘realistic’ model of the present-day thermal convective flow
in the mantle it is clearly essential that such a model be capable of providing a satisfactory
fit to a diverse suite of surface geodynamic observables, as summarized in Table 5 in
the preceding section. This necessary condition follows from the recognition that these
observables provide robust constraints on density anomalies across the entire mantle,
as shown by the geodynamic kernel functions in Fig. 10. The density anomalies that
are constrained by these surface observables are, of course, those which also drive the
mantle-wide convective circulation.

The relationship between the mantle convective flow and the internal density anoma-
lies can be explicitly quantified in terms of Green functions that characterize the viscous-
flow impulse response of the mantle to point density loads (e.g. Parsons & Daly 1983,
Forte & Peltier 1987). The derivation of these Green functions for a compressible, self-
gravitating mantle with a complex depth-dependence of density and viscosity was pre-
sented in section 2.3. We recall from section 2.3.7, in particular expression (95), that the
viscous-flow Green functions relate the 3-D mantle flow field to the internal density per-
turbations via the following convolution integral:

Uαm
ℓ (r) =

∫ a

b

Uα
ℓ (r, r′)ρm

ℓ (r′) dr′ , (116)

in which ρm
ℓ (r′) is the spherical harmonic coefficient of the mantle density perturbations,

Uαm
ℓ (r) is the generalised spherical harmonic coefficient of the velocity field (see eq. 31),

and Uα
ℓ (r, r′) is the corresponding Green function.

The Green functions for the vertical component of flow, calculated on the basis of the
‘V2’ viscosity profile (Fig. 9), are plotted at four target depths in Fig. 27. The average
amplitudes of the Green functions for depths < 1000 km are significantly greater than
those for the deeper mantle, owing the significantly lower viscosity in upper mantle. At
shallow depths, in the low-viscosity asthenosphere region, flows characterized by shorter
horizontal wavelengths (in the degree range ℓ > 8) are excited most efficiently. This
characteristic persists to bottom of the upper-mantle, in the transition zone, although it
is now the intermediate wavelengths (in the range 8 < ℓ < 64) that are more strongly
excited. The shorter horizontal wavelengths are more sensitive to the higher-magnitude
local viscosity in the transition zone and hence are more attenuated. In the lower mantle a
completely different situation arises, where the longest horizontal wavelengths of flow (in
the range ℓ < 8) are excitedwith the greatest amplitude, because of the very high viscosity
in the deep mantle. It is especially noteworthy that these long-wavelength components
of the lower-mantle flow field are providing an integrated response to density anomalies
across the entire depth of the mantle.

It is instructive to note, as a general rule, that at sufficiently short horizontal wave-
lengths, for ℓ ≫ 1, the vertical flow at a given target radius ro in the mantle is sensitive
to density anomalies located in a vertical interval ro − ∆r/2 < ro < ro + ∆r/2 , where
∆r ≈ 2πro/ℓ. Hence even at shallow depths, for example in the low-viscosity astheno-
sphere where intermediate to shorter wavelengths are excited strongly, the flow is sensi-
tive to the integral of density anomalies across the entire upper mantle (see top-left panel
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in Fig. 27). It is therefore difficult to make robust inferences of shallow mantle flow,
for example under continents, by only considering 3-D images recovered from regional
tomography studies that describe lateral heterogeneity in the top 200 or 300 km of the
mantle (e.g. Levander et al. 2011), especially when the tomography models are derived
from short-period seismic surface waves or ambient noise techniques (e.g. Shen et al.
2013). Shallow flow driven by sources of buoyancy located in the transition zone region
of the upper mantle will be important and their contribution must be included in flow
modelling.
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Figure 27: Green functions U0
ℓ (r, r′) for the vertical component, U0m

ℓ (r) (see eq. 31), of the
mantle flow field. The Green functions are plotted for four different depths in the man-
tle: (top-left) 250 km, in the mantle asthenosphere, (top-right) 645 km, at the bottom of the
transition zone, (bottom-left) 1000 km, in the top half of the lower mantle, (bottom-right)
2685 km, at the top of the seismic D” layer. The kernels are colour-coded according to
the spherical harmonic degree of the flow (legend in the top-left panel). The solid lines
represent kernels calculated for a free-slip surface boundary and the dashed lines repre-
sent kernels for a no-slip (rigid) surface. The kernels are calculated for the ‘V2’ mantle
viscosity profile (Fig. 9) and for the depth-dependent density given by PREM (Fig. 5).
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There are two distinct contributions to the horizontal component of mantle flow, the
poloidal contribution UP m

ℓ (r) (defined in eq. 37) that is directly driven by mantle den-
sity anomalies according to expression (116), and the independent toroidal contribution
UT m

ℓ (r) (defined in eq. 37) that is viscously coupled to the radial vorticity of the tectonic
plates, whose motions are generated by the buoyancy driven (poloidal) mantle flow (see
eq. 94).

The Green functions for horizontal poloidal flow are plotted in Fig. 28 at the same
four target depths as for the vertical flow kernels (Fig. 27). The horizontal flow kernels
provide a sensitivity to mantle density anomalies that is markedly different from that of
the vertical flow. Indeed it is quite clear that at sufficiently short horizontal wavelengths
(ℓ > 8), the horizontal flow kernels are effectively a radial derivative of the vertical flow
kernels. This is expected on theoretical grounds (see eq. 119 in Forte & Peltier 1994).
Horizontal flow will therefore be particularly sensitive to depth-dependent changes in
the distribution of the mantle density anomalies. In the deep interior of the mantle (e.g.
at depths of 645 and 1000 km – see Fig. 28), this vertical sensitivity is also apparent at the
longest horizontal wavelengths. In the deep lower mantle we again note, owing to the
high viscosity of this region, that only the longest horizontal wavelengths (corresponding
to ℓ < 8) of horizontal flow are efficiently excited and they will provide an integrated
response to density anomalies across the entire mantle.

The viscous excitation function for toroidal flow is defined by the following extension
to eq. (94):

UT m

l (r) = F T
ℓ (r)

ı ra

Ω1
(r̂ ·∇× v)m

l , (117)

where F T
ℓ (r) is the depth-dependent toroidal-flow response, determined by the down-

ward propagation of the surface vector defined in eq. (74). This downward propagation
is described above in section 2.3.6. A plot of the toroidal-flow excitation function F T

ℓ (r)
is presented in Fig. 29. We note here that excitation of toroidal flow, through viscous
coupling with the overlying plate motions, is most efficient in the upper mantle and very
little extends into the lower mantle. The only apparent exception is the degree-1 toroidal
flow, which has significant amplitude at all depths in the mantle. This is, however, an
entirely degenerate solution of the toroidal-flow equations (see eq. 36) when viscosity
varies only with depth and has no dynamical significance.

The numerical solution for the ℓ = 1 excitation function presented in Fig. 29 is math-
ematically identical to the simple function F T

ℓ=1(r) = (r/ra) and is hence is independent
of the mantle viscosity structure. It is possible to show (e.g. Forte & Peltier 1994) that
this function yields a horizontal flow in the mantle that is everywhere mathematically
identical to a simple rigid-body rotation of the entire mantle:

utoroidal
ℓ=1 (r) = Ω× r (118)

where the angular rotation Ω is identical to the global net rotation of the tectonic platemo-
tions. This rigid-body rotation is associated with a state of zero stress in the mantle and
therefore it cannot be generated in a dynamically consistent treatment where the viscos-
ity varies with depth only. Lateral viscosity variations are required to generate degree-1
toroidal flow (e.g. Forte & Peltier 1994). The degree-1 degeneracy that arises with radially
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symmetric viscosity is eliminated by calculating flow in reference frame with zero net ro-
tation. The latter is dynamically equivalent to the rotating frame described by expression
(118) because all flow-induced stresses in the mantle are identical in the two reference
frames. For this reason all mantle flow predictions presented below (Figs. 30, 31) employ
a global no-net-rotation frame for the mantle.
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Figure 28: Green functions UP
ℓ (r, r′) for the horizontal component, UP m

ℓ (r) (see eq. 37), of
the poloidal mantle flow field. All calculations and details are as in Fig. 27.

86



00.20.40.60.81

Amplitude

0

500

1000

1500

2000

2500

3000

D
ep

th
 (

km
)

L=1
L=2
L=4
L=8
L=16
L=32
L=64
L=128

Toroidal Flow Excitation Function

Figure 29: Excitation functions F T
ℓ (r) for the horizontal component, UT m

ℓ (r) (see eq. 37),
of the toroidal mantle flow field. These excitation functions are calculated for the ‘V2’
mantle viscosity profile (Fig. 9).

Given the excellent geodynamic fits provided by the joint seismic-geodynamic tomog-
raphy density models, it is of interest to explore the implications of these models for the
global convective flow in the mantle. Figs. 30 & 31 show the predicted convective flow
at selected depths in the upper and lower mantle, respectively, obtained on the basis of
the TX2008 and GyPSuM tomography models. The predicted flow at the top of the
lithosphere (top row in Fig. 30) provides an excellent match to the (No-Net-Rotation)
NUVEL-1 plate velocity field. This is not unexpected since the joint seismic-geodynamic
tomography models were inverted with the divergence of the surface plate motions as a
constraint (see Table 5). This prediction mainly serves as an explicit demonstration that
the density anomalies in the mantle, integrated with the kernels in Figs. 28,29, have been
properly resolved by the tomographic inversion procedure.

In the low-viscosity asthenosphere (middle row in Fig. 30), the large-scale pattern
of vertical flow is similar to that in the lithosphere, with upwellings and downwellings
under the oceanic ridges and subduction zones, respectively. The pattern of horizon-
tal flow, however, deviates significantly from the lithospheric pattern in many locations
and can even be anti-correlated, for example under the Western U.S. There is an addi-
tional complexity that is represented by the striking, ‘mottled’ pattern of shorter wave-
length upwellings that is ubiquitous. For example, local plume-related upwelling under
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Hawaii, Iceland and the numerous volcanic swells of the African plate (e.g. Azores, Ca-
naries, Cape Verde, Hoggar Massif, East African Rift) are clearly evident. In addition,
and less generally recognized, are the upwellings under the interiors of the Eurasian and
North American plates and the many local upwellings under the Pacific plate. The quasi-
linear pattern of upwellings that extends from the Caribbean to Eastern Canada, along
the Atlantic Coast of the U.S., and the clearly resolved upwelling under Bermuda, have
achieved considerable prominence in recent work that reveals the importance of these
upwellings in driving variable topographic uplift of the U.S. East Coast (Rowley et al.
2013).

The predicted flow at the bottom of the upper mantle, in the transition zone region
(bottom row in Fig. 30), strongly reinforces the pattern of (plume-related) upwelling and
(subducted-slab) downwelling found at shallower depths. Focussed plume-related up-
wellings under Hawaii, Iceland, Crozet, Kerguelen, Caroline, Canary, Cape Verde Islands
are all evident. A deep, linear upwelling under the southern margin of the Indian plate
contributes to strong north-northeast directed horizontal flow (see flow at 250 km) that
clearly represents a source of strong (viscous shear) forcing for the continued motion and
collision of the overlying Indian plate. Most striking, however, is the intensified pattern of
deep upwelling under the East Pacific ridge system. The deep-seated, buoyancy-driven
flow under the East Pacific Rise (EPR), in particular, is found to be an important driver of
the Pacific plate motion, such that time-dependent changes in this buoyancy have been
directly linked to the geologically recent deceleration of this plate (Forte et al. 2009).

The lower mantle is a region of very high viscosity (see Fig. 9) and, as anticipated on
the basis of the flow kernels (Figs. 27, 28), the predicted flow (see Fig. 31) is dominated
by the longest horizontal wavelengths. The long-lived history of lithospheric subduction
under the Northern and Southwestern Pacific is clearly imprinted in the pattern of lower-
mantle downwellings, as is the history of subduction under the Tethys and Farallon con-
vergence zones. The predicted flow field in the deep lower mantle (middle and bottom
row of Fig. 31) reveals several distinct centres of active, buoyancy-driven upwellings, or
‘superplumes’. The most prominent superplumes in the model TX2008 prediction are
located under Southern Africa and Southwest Indian Ocean, under the Southwestern Pa-
cific (under the Caroline Islands), and under the EPR (centred under Easter Island). Ad-
ditional prominent, but lower-amplitude upwellings are located under western Siberia,
under Cape Verde, and under the Southwestern U.S. The upwelling under Siberia is of
particular interest because it is correlated with the proposed location of the eruption of
the Siberian traps (Smirnov & Tarduno 2010). As shown by the mantle convection mod-
elling of Glisovic et al. (2012), the lateral stability and activity of this ‘Siberian plume’ is
predicted to be long-lived, extending over several hundred million years. In general the
amplitudes of the predicted upwellings are greater, and also more spatially focussed, than
the more diffuse downwellings. These results are closely matched by the flow predictions
obtained using the density anomalies in model GyPSuM (Fig. 31).

The robustness and dynamical significance of the predicted lower-mantle superplumes
may first be appreciated by noting that this long-wavelength pattern of upwellings is pro-
duced by an integral of the density anomalies across the entire depth of the mantle (see
the kernels in Figs. 27, 28). This pattern of lower-mantle flow is therefore very well con-
strained by the joint seismic-geodynamic tomography inversions, particularly because
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they also include additional effects from lower-mantle compositional heterogeneity that
acts to locally oppose or cancel thermally generated buoyancy. The dynamical signifi-
cance of these lower-mantle superplumes, in terms of the long-term thermal evolution of
the mantle, has been explored in detail by Glisovic et al. (2012). They carried out mantle
convection simulations that were initiated with the present-day density heterogeneity in
joint tomography model TX2008 and the thermal evolution of the 3-D structure in the
mantle was integrated forwards over many hundred million years (in excess of 2 billion
years, in total). These very-long time convection simulations revealed the extraordinary
stability and longevity of the present-day superplumes shown in Fig. 31, requiring a
strong flux (> 13 TW ) of heat entering the mantle from the core.

Arguably the most striking feature of the flow predictions shown in the upper and
lower mantle (Figs. 30,31) is the strong, vertically coherent superplume-related upwelling
under the EPR. This active upwelling, driven by the integrated buoyancy across the entire
mantle, is clearly evident at all depths in the mantle. The EPR is thus the only oceanic
ridge which sits above an upwelling that extends down to the CMB. This result that has
not been found in previous tomography-based simulations of mantle dynamics because,
until now, they employed purely seismic 3-D mantle models that have been converted
a-posteriori to density with simple scaling factors. The longevity and lateral stability of
the EPR superplume, possibly over several hundred million years as shown in Glisovic et
al. (2012), should have a major impact on the long-term evolution of plate tectonics in the
Pacific Ocean and for the overall thermal evolution of the mantle.
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Figure 30: Predicted mantle flow at three different depths in the upper mantle : litho-
sphere (top row), asthenosphere (middle row) and base of the transition zone (bottom
row). The buoyancy forces are derived from two joint seismic-geodynamic inversions for
mantle density anomalies: models TX2008 (Simmons et al. 2009) and GyPSuM (Sim-
mons et al. 2010) in the left and right columns, respectively. The viscous flow kernels are
calculated on the basis of the ‘V2’ viscosity profile, derived from the joint GIA-convection
inversions, shown in Fig. 9. The flow fields are all represented in terms of a spherical
harmonic expansion truncated at degree ℓ = 72. All flow predictions are in a mantle
reference frame with zero global (net) rotation.
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TX2008, Depth = 1000 km
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Figure 31: Predicted mantle flow at three different depths in the lower mantle: 1000 km
(top row), 2000 km (middle row) and 2685 km, corresponding to the top of the seismic
D”-layer (bottom row). The flow calculation for input density anomalies from models
TX2008 (Simmons et al. 2009) and GyPSuM (Simmons et al. 2010) is identical to that in
Fig. 30.

5 Concluding remarks

Tomography models of 3-D mantle structure, derived solely by inverting global seismic
data, provide reasonably good fits to a wide variety of surface geodynamic observables
related to mantle convection. The previous tomography-based models of mantle dynam-
ics thus demonstrated that global seismic data can indeed be used to recover images of lat-
eral heterogeneity that is produced by the thermal convection process in Earth’s mantle.
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The tabulated summaries of the predicted convection results (Tables 1 - 4) show however
that the fits leave considerable room for improvement and this raises the fundamental
question as to what aspects of the previous tomography models, or indeed the mantle
flow calculations, may be deficient or inadequate.

A major development that goes far in addressing this outstanding question, is the
technique for the joint or simultaneous inversion of global seismic and geodynamic data
sets that also incorporates mineral physical constraints on the thermal contributions to
mantle heterogeneity (e.g., Forte et al. 1994, Forte & Woodward 1997, Simmons et al.et al.
2006, 2007, 2009, 2010). These joint seismic-geodynamic inversions show that it is possible
to obtain greatly improved fits to the global convection-related data (see Table 5) using
the mantle flow theory which was presented and discussed in detail in section 2.3. The
improved fits are found to be the result of relatively small adjustments (mainly in ampli-
tude) to the seismically inferred heterogeneity in the mantle, especially the mid-mantle
region, in order to satisfy the independent constraints on 3-D mantle structure imposed
by the geodynamic data. Moreover, it is found that this reconciliation of seismic and geo-
dynamic constraints can be achieved in the context of a dominantly thermal origin for
mantle heterogeneity. The joint seismic-geodynamic inversions thus provide very strong
support for the fundamental conclusion that most of the heterogeneity in the mantle is
maintained by the process of thermal convection.

The greatly improved resolution of the 3-D density structure of the mantle provided
by the joint inversions is yielding important new insights on the connections between
the convective flow in the mantle and the surface geological evolution of our planet (e.g.
Forte et al. 2010). Recent simulations of time-reversed convection using joint seismic-
geodynamic tomography models also provide new perspectives on the evolution of 3-D
mantle structure in the geological past and how this evolution controls changes in the
surface topography of the Earth, with all the associated implications for global and re-
gional changes in continental elevations and sea level (e.g. Moucha et al. 2008, Moucha
& Forte 2011, Rowley et al. 2013). The key ingredient that ensures the reliability and
realism of these time-reversed convection simulations is the use of density anomalies,
coupled with appropriately constrained mantle viscosity (e.g. Fig. 9), derived from the
joint seismic-geodyamic inversions. The use of geodynamically consistent tomography
models ensures that the present-day mantle flow (see Figs. 30,31) is as realistic as pos-
sible. This is a fundamental issue, because the present-day mantle flow determines the
critically important starting trajectory for the highly nonlinear time-reversed convection
simulations.
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[9] Čadek, O. & Fleitout, L., Effect of lateral viscosity variations in the top 300 km on
the geoid and dynamic topography, Geophys. J. Int. , 152, 566–580, 2003.
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